<span><span>N2</span><span>O5</span></span>
Explanation!
When given %, assume you have 100 g of the substance. Find moles, divide by lowest count. In this case you'll end up with
<span><span>25.92 g N<span>14.01 g N/mol N</span></span>=1.850 mol N</span>
<span><span>74.07 g O<span>16.00 g O/mol O</span></span>=4.629 mol O</span>
The ratio between these is <span>2.502 mol O/mol N</span>, which corresponds closely with <span><span>N2</span><span>O5</span></span>.
The empirical formula of this compound is 
<h3>Empirical formula </h3>
To calculate the empirical formula of a compound, the value of moles of each element is needed.
As we have the information of the mass value, we will use the molar mass expression, which corresponds to:





As the value of the empirical formula must be an integer, simply multiply the two values by a common factor:


So, the empirical formula of this compound is
.
Learn more about empirical formula: brainly.com/question/1247523
High now I need to write 20 characters
The answer to this question would be: resistance
When a patient developing a resistance to a certain drug, the same amount of doses will not exert the same effect as before. The effect will be lower, thus the doctor will need to increase the dose to increase the effect
It is not correct to say " a molecule of salt " because salt is a compound.
Explanation:
- As we know a molecular bond is present in each molecule.
- Salt (NaCl) is considered as a compound because it is made up of two types of elements that are sodium as well as chlorine.
- On the other hand it is not considered as a molecule as it is not holding an ionic bond.
- As a result we can name it as an ionic compound. Hence it is not considered as a molecule of salt.