Answer:
what are the options i cant see em
Explanation:
Explanation:
Most molecules survive for long periods of time at room temperature because at room temperature, they are stable. The room temperature is the temperature between 20-25°C where human beings are the most comfortable.
At the room temperature, most molecules are in their natural physical state without any reason to rearrange their bonds and a times be destroyed. The energy at room temperature is just perfect for bond stability.
Learn more:
ideal gas brainly.com/question/2385746
#learnwithBrainly
Answer:
23.5 grams of AlBr3 will be produced by 27.20 grams of NaBr
Explanation:
The balanced equation here is
6NaBr + 1AlO3 = 3Na2O + 2AlBr3
6 moles of NaBr are required to produce 2 moles of AlBr3
Mass of one mole of NaBr = 102.894 g/mol
Mass of one mole of AlBr3 = 266.69 g/mol
Mass of 6 moles of NaBr = 6*102.894 g/mol
Mass of two moles of AlBr3 = 2*266.69 g/mol
6*102.894 g NaBr produces 2*266.69 g of AlBr3
23.5 grams of AlBr3 will be produced by (6*102.894)/(2*266.69 )*23.5 = 27.20 grams of NaBr
Answer:
d is the right one. aaßriadjcjfjfjfdjfjf
Answer:
The abundance of first isotope is 69.15 %
The abundance of second isotope is 30.85 %
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope:
% = x %
Mass = 62.9296 u
For second isotope:
% = 100 - x
Mass = 64.9278 u
Given, Average Mass = 63.546 u
Thus,
Solving for x, we get that:
x = 69.15 %
<u>The abundance of first isotope is 69.15 %</u>
<u>The abundance of second isotope is 100 - 69.15 % = 30.85 %</u>