Speific heat capacity is measured with the aid of determining how a whole lot warmth electricity is needed to increase one gram of a substance one digree Celsius. The Speific heat capacity of water is 4.2 joules per gram per degree Celsius or 1 calorie in step with gram per digree Celsius.
The specific heat capacity is defined as the amount of heat (J) absorbed consistent with unit mass (kg) of the substance while its temperature increases 1 ok (or 1 °C), and its units are J/(kg k) or J/(kg °C).
Factors specific heat capacity relate to are temperature and strength.
The Speific heat capacity C can be measured as q = mC∆T
Or, C = q/m∆T
where,
C is the specific heat capacity
q is the quantity of heat required
m is the mass
∆T is the change in temperature
As a consequence so as to degree the specific heat capacity we need to recognize mass of the substance, quantity of heat lost or gain by the substance and the exchange in temperature.
Lear more about Speific heat capacity here: brainly.com/question/17162473
#SPJ4
The balanced equation for the above reaction is
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of NaOH moles required-0.5000 M / 1000 mL/L x 21.17 mL = 0.010585 mol
According to stoichiometry, acid moles required are 1/2 of the base moles reacted
Therefore number of H₂SO₄ moles reacted - 0.010585 /2 mol
Number of moles in 42.35 mL of H₂SO₄ - 0.010585 /2 mol
Therefore in 1 L solution - (0.010585) /2 / 42.35 mL x 1000 mL/L = 0.125 M
Molarity of H₂SO₄ - 0.125 M
Answer:
In the chemical industry.
A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.
massive livand that sarah or someone is how u do it