Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

Answer:
14 gallons
Explanation:
357 divided by 14 = 25.5 and if you check your answer 14 x 25.5 = 357 (i hope this is right)
Answer: all I know it’s not -31.5 for ppl taking the k12 test
Explanation: I took the test
Answer:
molarity of diluted solution = 1.25 M
Explanation:
Using,
C1V1 (Stock solution) = C2V2 (dilute solution)
given that
C1 = 2.50M
V1 = 250ML
C2 = ?
V2 = 500ML
2.50 M x 250 mL = C2 x 500 mL
C2 = (2.50 M x 250 mL) / 500 mL
C2 = 1.25 M
Hence, molarity of diluted solution = 1.25 M
Answer:
<h3>The answer is 2.16 moles</h3>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>2.16 moles</h3>
Hope this helps you