Heat is the most important thing in the melting point of rock. Rock, melts when put into<span> 572 degrees Fahrenheit and 1,292 degrees Fahrenheit. Different types of rock may melt at different temperature because in the difference of their material. HOPED THIS HELPS YOU :)</span>
The mass of a sample of alcohol is found to be = m = 367 g
Hence, it is found out that by raising the temperature of the given product, the mass of alcohol would be 367 g.
Explanation:
The Energy of the sample given is q = 4780
We are required to find the mass of alcohol m = ?
Given that,
The specific heat given is represented by = c = 2.4 J/gC
The temperature given is ΔT = 5.43° C
The mass of sample of alcohol can be found as follows,
The formula is c = 
We can drive value of m bu shifting m on the left hand side,
m = 
mass of alcohol (m) = 
m = 367 g
Therefore, The mass of the given sample of alcohol is
m = 367g
It requires 4780 J of heat to raise the temperature by 5.43 C in the process which yields a mass of 367 g of alcohol.
Answer:
Al2O3 + H2SO4 = Al2(SO4)3 + H2O
Explanation:
Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.
Answer:
HBr(aq) + LiOH(aq) → LiBr(aq) + H2O(l)
Explanation:
A neutralization reaction is a process in which an acid, aqeous HBr reacts completely with an appropriate amount of base, aqueous LiOH to produce salt, aqueous LiBr and water, liquid H2O only.
HBr(aq) + LiOH(aq) → LiBr(aq) + H2O(l)
Acid + base → Salt + Water.
During this reaction, the hydrogen ion, H+, from the HBr is neutralized by the hydroxide ion, OH-, from the LiOH to form the water molecule, H2O.
Thus, it is called a neutralization reaction.