It will just be -7/12 because anything times 1 stays the same
Answer: See below
Step-by-step explanation:
27. -(a-3)
28. (b-1)(b+3)
29. (c+4)(c+5)
30. d(d+5)
31. -(3/4)(2e-5)
Sorry - I don't have time to enter the details. Look for areas where the expressions can be factored in a manner that forms as many equivalent expressions in both the numerator and denominator.
For example: In problem 30:
(5d-20)/(d^2+d-20) * [??]/20d = 1/4
Factor:
<u>(5(d-4))</u> <u>d(d+5)</u> = 1/4
(d-4)(d+5<u>)</u> 20d
The (d-4), d+5, and d terms cancel, leaving
5/20 = 1/4
To compare the answers, you need to have the same denominator.
We know that, 18 is a common denominator between 6 and 9.
(5/6)*3/3 => 15/18 (ALMONDS)
(7/9)*2/2 => 14/18 (CASHEWS)
As seen, the weight of almonds is 1/18 bigger than the cashews.
Hope I helped :)
Answer: The submarine would be 710 feet below the surface after it is finished diving.
Step-by-step explanation:
Given: Each move downward was of 355 feet
If the submarine dives below the surface, heading downward in two moves.
Then, the total distance moved by submarine = 2 (355) feet
= 710 feet
Therefore, the submarine would be 710 feet below the surface after it is finished diving.
<span>Ayesha's right. There's a good trick for knowing if a number is a multiple of nine called "casting out nines." We just add up the digits, then add up the digits of the sum, and so on. If the result is nine the original number is a multiple of nine. We can stop early if we recognize if a number along the way is or isn't a multiple of nine. The same trick works with multiples of three; we have one if we end with 3, 6 or 9.
So </span>

<span>has a sum of digits 31 whose sum of digits is 4, so this isn't a multiple of nine. It will give a remainder of 4 when divided by 9; let's check.
</span>

<span>
</span>Let's focus on remainders when we divide by nine. The digit summing works because 1 and 10 have the same remainder when divided by nine, namely 1. So we see multiplying by 10 doesn't change the remainder. So

has the same remainder as

.
When Ayesha reverses the digits she doesn't change the sum of the digits, so she doesn't change the remainder. Since the two numbers have the same remainder, when we subtract them we'll get a number whose remainder is the difference, namely zero. That's why her method works.
<span>
It doesn't matter if the digits are larger or smaller or how many there are. We might want the first number bigger than the second so we get a positive difference, but even that doesn't matter; a negative difference will still be a multiple of nine. Let's pick a random number, reverse its digits, subtract, and check it's a multiple of nine:
</span>