Answer:
= 72900 years
Explanation:
- The half-life is the time taken by a radioactive material to decay by half the original amount.
- The half-life of plutonium-239 is 24300 years which means it takes 24300 years to decay by half the original amount.
To calculate the time taken for a mass of 8 kg to decay to 1 kg we use;
New mass = Original mass x (1/2) ^n, where n is the number of half-lives
Therefore;
1 kg = 8 kg × (1/2)^n
1/8 = (1/2)^n
solving for n;
n =3
Therefore;
Time = 3 × 24300 years
= 72900 years
It will, therefore, take 72900 years for 8 kg of plutonium-239 to decay to 1 kg.
Answer:
49.4 g Solution
Explanation:
There is some info missing. I think this is the original question.
<em>A chemistry student needs 20.0g of acetic acid for an experiment. He has 400.g available of a 40.5 % w/w solution of acetic acid in acetone. </em>
<em>
Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button. Round your answer to 3 significant digits.</em>
<em />
We have 400 g of solution and there are 40.5 g of solute (acetic acid) per 100 grams of solution. We can use this info to find the mass of acetic acid in the solution.

Since we only need 20.0 g of acetic acid, there is enough of it in the solution. The mass of solution that contains 20.0 g of solute is:

Answer:
a) 1.61 mol
b) Al is limiting reactant
c) HBr is in excess
Explanation:
Given data:
Moles of Al = 3.22 mol
Moles of HBr = 4.96 mol
Moles of H₂ formed = ?
What is limiting reactant =
What is excess reactant = ?
Solution:
Chemical equation:
2Al + 2HBr → 2AlBr + H₂
Now we will compare the moles:
Al : H₂
2 : 1
3.22 : 1/2×3.22 = 1.61 mol
HBr : H₂
2 : 1
4.96 : 1/2×4.96 = 2.48 mol
The number of moles of H₂ produced by Al are less it will be limiting reactant while HBr is present in excess.
Moles of H₂ :
Number of moles of H₂ = 1.61 mol
Anything with a pH level of 3, 2, or 1.