Answer:
The molarity of the solution is 7.4 mol/L
Explanation:
From the question above
0.400 ml of water contains 1.00 g of hydrochloride form of cocaine
Therefore 1000 ml of water will contain x g of hydrochloride form of cocaine
x = 1000 / 0.400
x = 2500 g
2500g of hydrochloride form of cocaine is present in 1000 ml of water.
Mole of hydrochloride form of cocaine = mass /molar mass of hydrochloride
Mole of hydrochloride form of cocaine = 2500/339.8
= 7.4 mol
Molarity = mol/ volume in liter (L)
molarity = 7.4 /1
Molarity = 7.4 mol/L
Answer:
The value of Q must be less than that of K.
Explanation:
The difference of K and Q can be understood with the help of an example as follows
A ⇄ B
In this reaction A is converted into B but after some A is converted , forward reaction stops At this point , let equilibrium concentration of B be [B] and let equilibrium concentration of A be [A]
In this case ratio of [B] and [A] that is
K = [B] / [A] which is called equilibrium constant.
But if we measure the concentration of A and B ,before equilibrium is reached , then the ratio of the concentration of A and B will be called Q. As reaction continues concentration of A increases and concentration of B decreases. Hence Q tends to be equal to K.
Q = [B] / [A] . It is clear that Q < K before equilibrium.
If Q < K , reaction will proceed towards equilibrium or forward reaction will
proceed .
The number of moles of sodium dichromate from the number of moles of oxygen atoms can be determined through stoichiometry. Using the molecular formula of the compound, Na2Cr2O7, 1 mole of the compound contains 7 moles of oxygen. Hence, 14 moles O2*(1 mole Na2Cr2O7/ 7 mole O2) is equal to 2 moles <span>Na2Cr2O7.</span>
The complete table is inserted.
A table is given,
Formulas used:
pH= -log(H⁺)
pOH= -log(OH⁻)
pH+ pOH=14
Calculations:
For A: (H⁺)=2×10⁻⁸M
Using the pH formula:
pH= -log(H⁺)=-log(2×10⁻⁸)=7.69
pOH=14 - 7.69=6.3
Calculating OH concentration,
pOH= -log(OH⁻)
6.3= -log(OH⁻)
(OH⁻)=5.011×10⁻⁷M
Hence, the nature of A is basic.
Similarily,
For B,
(OH⁻)=1×10⁻⁷
Using the pH formula:
pOH= -log(OH⁻)= -log(1×10⁻⁷)=7
pH=14-7=7
Calculating H concentration,
pH= -log(H⁺)
7= -log(H⁺)
(H⁺)=1×10⁻⁷M
Hence, the nature of B is neutral.
Similarily,
For C,
pH=12.3
Using the pH formula:
pOH=14-12.3=1.7
Calculating H concentration,
pH= -log(H⁺)
12.3= -log(H⁺)
(H⁺)=5.011×10⁻¹³M
Calculating OH concentration,
pOH= -log(OH⁻)
1.7= -log(OH⁻)
(OH⁻)=1.99×10⁻²M
Hence, the nature of C is Basic.
Similarily,
For D,
pOH=6.8
Using the pH formula:
pH=14-6.8=7.2
Calculating H concentration,
pH= -log(H⁺)
7.2= -log(H⁺)
(H⁺)=6.309×10⁻⁸M
Calculating OH concentration,
pOH= -log(OH⁻)
6.8= -log(OH⁻)
(OH⁻)=1.58×10⁻⁷M
Hence, the nature of D is basic.
Learn more about the acid and bases here:
brainly.com/question/16189013
#SPJ10
Answer:
1 x 10⁻¹¹ M
Explanation:
<u>(Step 1)</u>
Determine the pH.
pH = -log[H⁺]
pH = -log[1 x 10⁻³ M]
pH = 3
<u>(Step 2)</u>
Determine the pOH.
pH + pOH = 14
3 + pOH = 14
pOH = 11
<u>(Step 3)</u>
Determine the hydroxide (OH⁻) concentration.
[OH⁻] = 10^-pOH
[OH⁻] = 10⁻¹¹
[OH⁻] = 1 x 10⁻¹¹ M