1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
3 years ago
8

Impulse: A batter applies an average force of 8000 N to a baseball for 1.1 ms. What is the magnitude of the impulse delivered to

the baseball by the bat
Physics
1 answer:
fiasKO [112]3 years ago
5 0

The magnitude of the impulse delivered to the baseball by the bat is 8.8 Ns.

<h3>Impulse experienced by objects</h3>

The impulse experienced by any object is equal to the change in the momentum of the object.

The magnitude of the impulse delivered to the baseball by the bat is calculated by applying the following equation.

J = Ft

where;

  • F is applied force = 8000 N
  • t is time, = 1.1 ms

J = (8000) x (1.1 x 10⁻³)

J = 8.8 Ns

Thus, the magnitude of the impulse delivered to the baseball by the bat is 8.8 Ns.

Learn more about impulse here: brainly.com/question/229647

You might be interested in
When monochromatic light shines perpendicularly on a soap film (n = 1.33) with air on each side, the second smallest nonzero fil
Anika [276]

Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.

From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

2t + \frac{1}{2} \lambda_{film} = (m+\frac{1}{2})\lambda_{film}

We are given the second smallest nonzero thickness at which destructive interference occurs.

This corresponds to, m = 2, therefore

2t = 2\lambda_{film}

t = \lambda_{film}

The index of refraction of soap is given, then

\lambda_{film} = \frac{\lambda_{vacuum}}{n}

Combining the results of all steps we get

t = \frac{\lambda_{vacuum}}{n}

Rearranging, we find

\lambda_{vacuum} = tn

\lambda_{vacuum} = (278)(1.33)

\lambda_{vacuum} = 369.74nm

4 0
3 years ago
A 5 kg block is sliding down a plane inclined at 30^0 with a constant velocity of 4 m/s. To determine the coefficient of frictio
Leya [2.2K]

Answer:

The necessary information is if the forces acting on the block are in equilibrium

The coefficient of friction is 0.577

Explanation:

Where the forces acting on the object are in equilibrium, we have;

At constant velocity, the net force acting on the particle = 0

However, the frictional force is then given as

F = mg sinθ

Where:

m = Mass of the block

g = Acceleration due to gravity and

θ = Angle of inclination of the slope

F = 5×9.81×sin 30 = 24.525 N

Therefore, the coefficient of friction is given as

24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479

μ × 42.479 N= 24.525 N

∴ μ = 24.525 N ÷ 42.479 N = 0.577

3 0
4 years ago
Read 2 more answers
Caregivers who are observed to be abusive or neglectful have been associated with the __________ type of attachment. A. secure B
Whitepunk [10]
Crrfhhvhhhhhjvvcffggh
4 0
3 years ago
A 0.450 kg soccer ball has a kinetic energy of 119 J.
Anastaziya [24]

Answer:

V is approximately = 23m/s

Explanation:

Kinetic energy = ½ mv²

Where m= mass = 0.450kg

V= velocity =?

K. E = 119J

Therefore

K. E = ½ mv²

Input values given

119= ½ × 0.450 × v²

Multiply both sides by 2

119 ×2  = 2 × 1/2 × 0.450 × v²

238= 0.450v²

Divide both sides by 0.450

238/0.450 = 0.450v²/0.450

v² = 528.89

Square root both sides

Sq rt v² = sq rt 528.89

V = 22.998m/s

V is approximately = 23m/s

I hope this was helpful, please rate as brainliest

8 0
3 years ago
a container of water is knocked off a 10.0 meter high ledge with a horizontal velocity of 1.00 meters/second. calculate the time
Evgen [1.6K]

Answer:

1.43 s

Explanation:

The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.

The vertical distance covered by an object in free fall is given by

S=ut + \frac{1}{2}at^2

where

u = 0 is the initial vertical speed

t is the time

a= g = 9.8 m/s^2 is the acceleration

since u=0, it can be rewritten as

S=\frac{1}{2}gt^2

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:

t=\sqrt{\frac{2S}{g}}=\sqrt{\frac{2(10.0 m)}{9.8 m/s^2}}=1.43 s

3 0
4 years ago
Other questions:
  • i know this is a lot to do but i will give you the highest amount of points (100, but you get 50 from it.) and i will cash app y
    5·1 answer
  • A solid ball and a hollow ball, each with a mass of 1.00 kg and radius of 0.100 m start from rest and roll down a ramp of length
    11·1 answer
  • In an oscillating L C circuit, the maximum charge on the capacitor is 1.5 × 10 − 6 C and the maximum current through the inducto
    7·1 answer
  • The carbon cycle is powered by which two processes?
    12·2 answers
  • The pull of a magnet
    8·1 answer
  • In many cartoon shows, a character runs of a cliff, realizes his predicament and lets out a scream. He continues to scream as he
    12·1 answer
  • What is a delta?<br><br><br><br><br><br><br><br><br><br> 20 characters...
    14·1 answer
  • Please help me with this I need a 10 sentence for it please open the image
    7·1 answer
  • Lab: Waves and Diffraction<br> Assignment: Lab Report<br> Anyone have this completed
    6·1 answer
  • a force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. what is the mass of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!