1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
4 years ago
13

An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,

air is at 95 kPa and 278C. Accounting for the variation of specific heats with temperature, determine (a) the temperature after the heat-addition process, (b) the thermal efficiency, and (c) the mean effective pressure
Physics
1 answer:
Sedbober [7]4 years ago
3 0

Answer:

a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa

Explanation:

a. Internal energy and the relative specific volume at s_1 are determined  from A-17:u_1=214.07kJ/kg, \ \alpha_r_1=621.2.

The relative specific volume at s_2 is calculated from the compression ratio:

\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825

#from this, the temperature and enthalpy at state 2,s_2 can be determined using interpolations T_2=862K and h_2=890.9kJ/kg. The specific volume at s_1 can then be determined as:

\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg

Specific volume,s_2:

\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg

The pressures at s_2 \ and\  s_3 is:

P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa

.The thermal efficiency=> maximum temperature at s_3 can be obtained from the expansion work at constant pressure during s_2-s_3

\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K

b.Relative SV and enthalpy  at s_3 are obtained for the given temperature with interpolation with data from A-17 :a_r_3=4.553 \ and\  h_3=1909.62kJ/kg

Relative SV at s_4 is

a_r_4=\frac{r}{r_c}\alpha _r_3

==\frac{16}{2}\times4.533\\=36.424

Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563

Hence, the thermal efficiency is 0.563

c. The mean relative pressure is calculated from its standard definition:

MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa

Hence, the mean effective relative pressure is 674.95kPa

You might be interested in
Newton's first law of motion is sometimes called the law of _________.
Gre4nikov [31]
Newtons first law of motion is also known as the law of inertia
3 0
3 years ago
Insulating materials are rated by their _____. specific heat heat index r-value temperature resistance
Leokris [45]
That would be the R-value
3 0
3 years ago
Read 2 more answers
Organism undergo constant chemical changes as they maintain an internal balance known as?
Aleks04 [339]
The answer is homeostasis.
3 0
3 years ago
Read 2 more answers
*A car is going through a dip in the road whose curvature approximates a circle of radius 150m. At what velocity will the occupa
Valentin [98]

Answer:

v= 14.85 m/s

Explanation:

  • When at the bottom of the dip, the only force that keeps the car in the circular trajectory, is the centripetal force.
  • This force is not a new force, is just the net force aiming to the center of the circle.
  • In this case, is just the difference between the normal force (always perpendicular to the surface, pointing upward) and the force that gravity exerts on the car (which is known as the weight), pointing downward.
  • So, we can write the following expression:

       F_{cent} = F_{n} - F_{g}  (1)

  • It can be showed that the centripetal force is related to the speed by the following expression:
  • F_{cent} = m*\frac{v^{2}}{r} (2)
  • The normal force, it is called the apparent weight, because it would be the weight as measured by a scale.
  • Replacing (2) in (1), and solving for Fn, we get:

       F_{n} = m*\frac{v^{2} }{r} + m*g (3)

  • Now, we need to find the value of v that makes Fn, exactly 15% more than the weight m*g, so we can write the following equation:

      F_{n} = 1.15*F_{g} = m*\frac{v^{2}}{r} +F_{g}  (4)

  • Replacing Fg by its value, simplifying, and solving for v, we get:

       v = \sqrt{0.15*g*r} = \sqrt{9.8 m/s2*0.15*150m} = 14.85 m/s (5)

3 0
3 years ago
What is the acceleration of a car that goes from 40 m/s to 80 m/s in 2s?
Law Incorporation [45]

Answer:

2

Explanation:

pls brainlyest i need it

3 0
2 years ago
Other questions:
  • A car is moving down a flat, horizontal highway at a constant speed of 21 m/s when suddenly a rock dropped from rest straight do
    11·1 answer
  • What is similar about analogical and symbolic representations?
    6·2 answers
  • A farmer pulls on his obstinate mule with 250 N of force to the right. The ground exerts a reaction force to the mule’s resistan
    11·1 answer
  • Which of the angles shown in this picture is the angle of incidence?<br> A<br> B
    8·2 answers
  • Sandra's target heart rate zone is 135bpm—172bpm. Marissa's target heart rate zone is 143bpm—176bpm. They stop playing basketbal
    15·2 answers
  • A plane coming in to land at a busy airport is asked to circle the airport until the air traffic congestion eases off. The pilot
    11·1 answer
  • A spring stretches 2.6 cm when a 7 g object is hung from it. The object is replaced with a block of mass 28 g which oscillates i
    14·1 answer
  • Which is the correct representation of the right-hand rule for a current flowing to the right?
    8·2 answers
  • Can someone help me with this science question like uhm!??!? anyone
    8·1 answer
  • for hundreds of years scientists deny the existence of rogue waves until the presence of when was finally caught on record. when
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!