Explanation:
Given that,
Mass of the object, m = 7.11 kg
Spring constant of the spring, k = 61.6 N/m
Speed of the observer, 
We need to find the time period of oscillation observed by the observed. The time period of oscillation is given by :

Time period of oscillation measured by the observer is :

So, the time period of oscillation measured by the observer is 5.79 seconds.
There are two general types of collisions, inelastic and elastic.
Inelastic collisions occur when two objects collide but neither of them bounce away from each other.
Collisions in which the objects do not touch each other are elastic. (Ex: Rutherford Scattering)
Answer:
As given that the car maintains a constant speed v as it traverses the hill and valley where both the valley and hill have a radius of curvature R.
(i) At point C, the normal force acting on the car is largest because the centripetal force is up. gravity is down and normal force is up. net force is up so magnitude of normal force must be greater than the car's weight.
(ii) At point A, the normal force acting on the car is smallest because the centripetal force is down. gravity is down and normal force is up. net force is up so magnitude of normal force must be less than car's weight.
(iii) At point C, the driver will feel heaviest because the driver's apparent weight is the normal force on her body.
(iv) At point A, the driver will feel the lightest.
(v)The car can go that much fast without losing contact with the road at A can be determined as follow:
Fn=0 - lose contact with road
Fg= mv²/r
mg=mv²/r
v=sqrt (gr)
Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.