Answer:
![a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa](https://tex.z-dn.net/?f=a.T_3%3D1723.8kPa%5C%5Cb.n%3D0.563%5C%5Cc.MEP%3D674.95kPa)
Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:
![\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825](https://tex.z-dn.net/?f=%5Calpha_r_2%3D%5Cfrac%7B%5Calpha_r_1%7D%7Br%7D%5C%5C%3D%5Cfrac%7B621.2%7D%7B16%7D%5C%5C%3D38.825)
#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:
![\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg](https://tex.z-dn.net/?f=%5Calpha_1%3D%5Cfrac%7BRT_1%7D%7BP_1%7D%5C%5C%5C%5C%3D%5Cfrac%7B0.287%5Ctimes%20300%7D%7B95%7D%20m%5E3%2Fkg%5C%5C0.906316m%5E3%2Fkg)
Specific volume,
:
![\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg](https://tex.z-dn.net/?f=%5Calpha_2%3D%5Cfrac%7B%5Calpha_1%7D%7Br%7D%5C%5C%3D%5Cfrac%7B0.906316%7D%7B16%7Dm%5E3%2Fkg%5C%5C%3D0.05664m%5E3%2Fkg)
The pressures at
is:
![P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa](https://tex.z-dn.net/?f=P_2%3DP_3%3D%5Cfrac%7BRT_2%7D%7B%5Calpha_2%7D%5C%5C%5C%5C%3D%5Cfrac%7B0.287%5Ctimes862%7D%7B0.05664%7D%5C%5C%3D4367.06kPa)
.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during ![s_2-s_3](https://tex.z-dn.net/?f=s_2-s_3)
![\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K](https://tex.z-dn.net/?f=%5Cbigtriangleup%20%5Comega_2_-_3%3DP%28%5Calpha_3-%5Calpha_2%29%5C%5CR%28T_3-T_2%29%3DP%5Calpha%28r_c-1%29%5C%5CT_3%3DT_2%2B%5Cfrac%7BP%5Calpha_2%7D%7BR%7D%28r_c-1%29%5C%5C%5C%5C%3D%28862%2B%5Cfrac%7B4367%5Ctimes%200.05664%7D%7B0.287%7D%282-1%29%29K%5C%5C%3D1723.84K)
b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :![a_r_3=4.553 \ and\ h_3=1909.62kJ/kg](https://tex.z-dn.net/?f=a_r_3%3D4.553%20%5C%20and%5C%20%20h_3%3D1909.62kJ%2Fkg)
Relative SV at
is
![a_r_4=\frac{r}{r_c}\alpha _r_3](https://tex.z-dn.net/?f=a_r_4%3D%5Cfrac%7Br%7D%7Br_c%7D%5Calpha%20_r_3)
=![=\frac{16}{2}\times4.533\\=36.424](https://tex.z-dn.net/?f=%3D%5Cfrac%7B16%7D%7B2%7D%5Ctimes4.533%5C%5C%3D36.424)
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;
![n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563](https://tex.z-dn.net/?f=n%3D1-%5Cfrac%7Bq_o%7D%7Bq_i%7D%5C%5C%3D1-%5Cfrac%7Bu_4-u_1%7D%7Bh_3-h_2%7D%5C%5C%3D1-%5Cfrac%7B65903-214.07%7D%7B1909.62-890.9%7D%5C%5C%3D0.563)
Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:
![MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa](https://tex.z-dn.net/?f=MEP%3D%5Cfrac%7B%5Comega%7D%7B%5Calpa_1-%5Calpa_2%7D%5C%5C%3D%5Cfrac%7Bq_i-q_o%7D%7B%5Calpha_1%281-1%2Fr%29%7D%5C%5C%3D%5Cfrac%7B1909.62-890.9-%2865903-214.7%29%7D%7B0.90632%281-1%2F16%29%7D%5C%5C%3D674.95kPa)
Hence, the mean effective relative pressure is 674.95kPa