Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by
.
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).

To find equilibrium number of of vacancies we have find N.

Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole

g/mole
Here
=0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,

=2.34×10²⁴ vacancies/ mole
Answer:
The concentration of H₃PO₄ will increase.
Explanation:
H₃PO₄(aq) + H₂O(l) ⇄ H₂PO₄⁻(aq) + H₃O⁺(aq)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If we add more H₂PO₄⁻, the position of equilibrium will move to the left to get rid of the added H₂PO₄⁻.
The concentration of H₃PO₄ will increase.
<u>Answer:</u>
3.67 moles
<u>Step-by-step explanation:</u>
We need to find out the number of
moles present in 350 grams of a compound.
Molar mass of
= 24.305
Molar mass of
= 35.453
So, one mole of
= 24.305 + (35.453 * 2) = 95.211g
1 Mole in 1 molecule of
= 
Therefore, number of moles in 350 grams of compound = 0.0105 * 350
= 3.67 moles
<span>C represents the displacement ONLY if it is the VECTOR arrow from P to W.
Usually if the arrow on the diagram has JUST a letter listing, that letter stands for the SIZE or LENGTH of the VECTOR arrow. In order to have the letter represent the VECTOR, itself, it must have a symbol of a "half arrow" placed above it.</span>
<span>The balanced chemical ionic equarion of MgS(aq)+CuCl2(aq) = CuS(s)+MgCl2(aq) would be as follows:
</span><span>Mg2+ + S2- + Cu 2+ + 2 Cl- ==> CuS + Mg2+ + 2 Cl-
Therefore, the net equation would be:
</span><span>Cu 2+ + S 2- ===> CuS
</span><span>
Hope this helps.
</span>