The dissolution of a solute in a solvent to form a solution usually occur in three steps, which are delta H1, delta H2 and delta H3.
For dissolving an ionic solid, the lattice energy, which is the energy that is holding the ionic particles in place correspond to DELTA H2 and it is the energy that must be conquered. The higher the charge in the ionic solid, the higher the lattice energy. The lattice energy must be overcome in order for the solid to dissolve.
Answer:
The equilibrium concentration of NO is 0.02124 M.
Explanation:
Given that,
Initial concentration of NOBr = 0.878 M

Temperature = 24°C
We know that,
The balance equation is

Initial concentration is,

Concentration is,

Equilibrium concentration

We need to calculate the value of x
Using formula of concentration
![k_{c}=\dfrac{[NO][Br_{2}]}{[NOBr]^2}](https://tex.z-dn.net/?f=k_%7Bc%7D%3D%5Cdfrac%7B%5BNO%5D%5BBr_%7B2%7D%5D%7D%7B%5BNOBr%5D%5E2%7D)
Put the value into the formula
![3.07\times10^{-4}=\dfrac{[2x][x]}{[0.878-2x]^2}](https://tex.z-dn.net/?f=3.07%5Ctimes10%5E%7B-4%7D%3D%5Cdfrac%7B%5B2x%5D%5Bx%5D%7D%7B%5B0.878-2x%5D%5E2%7D)





We need to calculate the equilibrium concentration of NO
Using formula of concentration of NO

Put the value of x


Hence, The equilibrium concentration of NO is 0.02124 M.
Answer:
all the statements are true of chemical changes
The organism would no longer grow.