Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Answer: Millard Reaction
Explanation:The yummy process, called the Maillard reaction, packs the cookie with riche taste
Answer:
C
Explanation:
You can see in the chemical equation that 7
are used up to produce 6
A and C, Igneous and Metamorphic
4X + 3O₂ = 2X₂O₃
n(X₂O₃)=0.02225 mol
m(X)=4.000 g
x - the molar mass of metal
m(X)/4x=n(X₂O₃)/2
x=m(X)/{2n(X₂O₃)}
x=4.000/{2*0.02225)=89.89 g/mol
X=Y (yttrium)