Let
x--------> the length side of the square base
h--------> the height of the box
we know that
<u>the volume of the box is equal to</u>

so

<u>the surface area of the box is equal to</u>
(remember that the box is open)
area of the base=
Perimeter of the base=
height=(h) m

substitute

we know that
the value of x can not be negative and the denominator can not be zero
therefore
<u>the answer is</u>
the domain of SA is x> 0
the domain is the interval-------------> (0,∞)
Answer:
No
Step-by-step explanation:
since the magnitude of xy ≠ zw,
|x-y| = xy = |52-121|= 69, |z-w| = zw = |-21-25| = 46
69 ≠ 46
Answer:
(a)
(b)
Step-by-step explanation:
(a) For using Cramer's rule you need to find matrix
and the matrix
for each variable. The matrix
is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get
more easily.

![\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%20A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%264%5Cend%7Barray%7D%5Cright%5D)
To get
, replace in the matrix A the 1st column with the results of the equations:
![B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]](https://tex.z-dn.net/?f=B_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%265%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D)
To get
, replace in the matrix A the 2nd column with the results of the equations:
![B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]](https://tex.z-dn.net/?f=B_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C1%262%5Cend%7Barray%7D%5Cright%5D)
Apply the rule to solve
:

In the case of B2, the determinant is going to be zero. Instead of using the rule, substitute the values of the variable
in one of the equations and solve for
:

(b) In this system, follow the same steps,ust remember
is formed by replacing the 3rd column of A with the results of the equations:

![\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%20A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%260%5C%5C1%262%261%5C%5C0%261%262%5Cend%7Barray%7D%5Cright%5D)
![B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]](https://tex.z-dn.net/?f=B_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%260%5C%5C0%262%261%5C%5C0%261%262%5Cend%7Barray%7D%5Cright%5D)
![B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]](https://tex.z-dn.net/?f=B_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%260%5C%5C1%260%261%5C%5C0%260%262%5Cend%7Barray%7D%5Cright%5D)
![B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]](https://tex.z-dn.net/?f=B_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%261%5C%5C1%262%260%5C%5C0%261%260%5Cend%7Barray%7D%5Cright%5D)



Did u type that by mistake
Answer:
0.17 cents per ounce, which is the 20 ounce
Step-by-step explanation:
3.40 / 20 = 0.17 cents per ounce
2.10/14 = 0.15 cents per ounce