A non-reversible Acton. A chemical reaction in non-reversible
Answer:

Explanation:
From this exercise, our knowable variables are <u>hight and initial velocity </u>


To find how much time does the <u>ball strike the ground</u>, we need to know that the final position of the ball is y=0ft


Solving for t using quadratic formula


or 
<u><em>Since time can't be negative the answer is t=6.96s</em></u>
Answer:
a is the answer I think so
a) The motion along the vertical direction and the motion along the horizontal direction.
b) The object remains in the air for a time period of 2usin(θ)/g.
Any object that is thrown in the air when gravity is acting on it is called a projectile. The motion of this projectile is called projectile motion.
When the projectile is thrown in the air at some angle θ, then there are two independent motions taking place at the same time. First is the component of motion along the vertical direction along which gravity acts. Second is the component of motion along the horizontal direction along which the object moves with a constant velocity. No force acts along the horizontal direction. The horizontal motion does not affect the vertical motion and the converse is also true. So these are independent of each other.
The time of flight is the time during which a projectile remains in the air. This time of flight is calculated using the formula,
T=2usin(θ)/g
where T is the time of flight, u is the initial velocity and g is the acceleration due to gravity.
Hence, the object remains in the air for a time period of 2usin(θ)/g.
Learn more about projectile.
brainly.com/question/11049671
#SPJ4
Answer with Explanation:
We are given that
Resistivity of copper wire=
Diameter=d=
Radius of copper wire=
Radius of solenoid=r'
1 m=100 cm
a.Length of wire=l=11.3 m
Area of wire=A=
Where 
A=
Resistance, R=
Using the formula


B.Length of solenoid=
m
Number of turns=
=60
C.Potential difference,V=3 V
Current,I=
I=
D.Total length =0.1 m
Number of turns per unit length,n=
Magnetic field along central axis inside of the solenoid,B=
