Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as



Acceleration is found if we have the force and mass.
With the following equation: F = ma, we can find the missing values.
F = 25n
M = 0.5 kg
a = ?
a = f/m
a = 25/0.5
a = 50
a = 50 m/s
So, the acceleration is 50 m/s^2
Jsisisusuagahannananana this is worth 22 points g that’s crazy 25
Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
Answer:
6.77 m/s
Explanation:
First, in the x direction:
Given:
Δx = 3.17 m
v₀ = v cos 30.8° = 0.859 v
a = 0 m/s²
Δx = v₀ t + ½ at²
(3.17 m) = (0.859 v) t + ½ (0 m/s²) t²
3.17 = 0.859 v t
3.69 = v t
Next, in the y direction:
Given:
Δy = 0.432 m
v₀ = v sin 30.8° = 0.512 v
a = -9.81 m/s²
Δy = v₀ t + ½ at²
(0.432 m) = (0.512 v) t + ½ (-9.81 m/s²) t²
0.432 = 0.512 v t − 4.905 t²
Two equations, two variables. Solve for t in the first equation and substitute into the second equation:
t = 3.69 / v
0.432 = 0.512 v (3.69 / v) − 4.905 (3.69 / v)²
0.432 = 1.89 − 66.8 / v²
66.8 / v² = 1.458
v² = 45.8
v = 6.77