Answer:
C) 16.3 ml
Explanation:
Density is equal to the ratio between the mass of an object and its volume:

where
m is the mass
V is the volume
In our problem, we know:
- density of aluminium: 
- mass of the aluminium foil: 
So we can re-arrange the equation above and use these data to find the volume of the piece of aluminium foil:

The technical definition of latitude is the angular distance north or south from the earth's equator measured through 90 degrees. ... Locations at lower latitudes receive stronger and more direct sunlight than locations near the poles. Energy input from the sun is the main driving force in the atmosphere.
The Seasons at Different Latitudes
The seasonal effects are different at different latitudes on Earth. Near the equator, for instance, all seasons are much the same. Every day of the year, the Sun is up half the time, so there are approximately 12 hours of sunshine and 12 hours of night.
When we consider Latitude alone as a control, we know that the low latitudes (say from the Equator to approximately 30 degrees N/S) are the warmest across the year (on an annual basis).
We know, weight = mass * gravity
10 = m * 9.8
m = 10/9.8 = 1.02 Kg
Now, Let, the gravity of that planet = g'
g' = m/r² [m,r = mass & radius of that planet ]
g' = M/10 / (1/2R)² [M, R = mass & radius of Earth ]
g' = 4M / 10R²
g' = 2/5 * M/R²
g' = 2/5 * g
g' = 2/5 * 9.8
g' = 3.92
Weight on that planet = planet's gravity * mass
W' = 3.92 * 1.02
W' = 4 N
In short, Your Answer would be 4 Newtons
Hope this helps!
Answer: 1.14 N
Explanation :
As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:
Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3 m3. 9.8 m/s2
Fb = 1.34 N
In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.
We can get the gravity force as follows:
Fg = (mb +mhe) g
The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:
MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg
Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N
Equating both sides of Newton´s 2nd Law in the vertical direction:
T + Fg = Fb
T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N
Answer:
The observable universe is still huge, but it has limits. because it's most likely like an plane all round.
Explanation: