The kinetic theory of gases is a simple, historically significant model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion
Answer:
<em>To reverse the direction of an electric current, we simply reverse the voltage either automatically with the help of some switching circuitry or manually by changing the voltage source terminals connection. </em>
Explanation:
For electric current to flow, there must be a potential difference, usually referred to as the voltage. The electric current flow is analogous to the flow of water under the action of a pump, through a series of pipe connections. The voltage is similar to the driving action of the pump, and current flows the same way water flows. The resistance due to drag on the pipe wall is equivalent to electric resistance. For current to flow in the reverse direction, the voltage or rather, the potential difference is changed, causing the current to flow in the opposite direction. This can be done by switching the terminals of the voltage source, or by automatic means. The automatic switching can be done with a transistor based circuitry.
The property illustrated to each statement is commutative because it shows that for some value of t both statements are equal.
The correct answer is:
<span>C) The actual frequency of the siren does not change despite appearances.
In fact, Bob will observe an increase in the apparent frequency as the emergency vehicle approaches him, while Jill will observe a decrease in the apparent frequency as the emergency vehicle moves away from him, because of the Doppler effect (the relative velocity between the observer and the source of the sound is changing), but this effect involves the apparent frequency, while the real frequency of the siren will remain the same.</span>