Answer:
a) a = 0.477 m/s^2
b) u = 0.04862
Explanation:
Given:-
- The rotational speed of the turntable N = 33 rev/min
- The watermelon seed is r = 4.0 cm away from axis of rotation.
Find:-
(a) Calculate the acceleration of the seed, assuming that it does not slip. (b) What is the minimum value of the coefficient of static friction between the seed and the turntable if the seed is not to slip
Solution:-
- First determine the angular speed (w) of the turntable.
w = 2π*N / 60
w = 2π*33 / 60
w = 3.456 rad/s
- The watermelon seed undergoes a centripetal acceleration ( α ) defined by:
α = w^2 * r
α = 3.456^2 * 0.04
α = 0.477 m / s^2
- The minimum friction force (Ff) is proportional to the contact force of the seed.
- The weight (W) of the seed with mass m acts downwards. The contact force (N) can be determined from static condition of seed in vertical direction.
N - W = 0
N = W = m*g
- The friction force of the (Ff) is directed towards the center of axis of rotation, while the centripetal force acts in opposite direction. The frictional force Ff = u*N = u*m*g must be enough to match the centripetal force exerted by the turntable on the seed.
Ff = m*a
u*m*g = m*a
u = a / g
u = 0.477 / 9.81
u = 0.04862
Sorry Man If you ask this question no one wants to write an essay and waste their time. You are smart enough to write an essay.
The correct answer is d) 200 lbs.
Hope that I was of help.
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
<h3>What is acceleration?</h3>
Acceleration is the change in velocity over time.
A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.
a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1