1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eduard
3 years ago
10

HELP find the a,b,c of this table​

Mathematics
1 answer:
fenix001 [56]3 years ago
6 0

Answer:

<em>a = b = 1 , c = - 8</em>

Step-by-step explanation:

ax² + bx + c = y

( - 5 )² a - 5b + c = 12

<em>c = - 8</em>

3² a + 3b + c = 4

25a - 5b - 8 = 12 ⇔ 25a - 5b = 20 ⇔ 5a - b = 4 ........ <em>(1)</em>

9a + 3b - 8 = 4 ⇔ 9a + 3b = 12 ⇔ 3a + b = 4 .......... <em>(2)</em>

<em>(1)</em> + <em>(2)</em>

8a = 8 ; <em>a = 1</em>

<em>b = 1</em>

<em>y = x² + x - 8</em>

You might be interested in
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Koalas absorb only 25% of the fiber they eat. A koala absorbed 10.5 ounces of fiber in one day. How many ounces of fiber did he
sweet [91]

\huge{\boxed{\text{42 ounces}}}

25% is equal to \frac{1}{4}, so multiplying it by 4 gets 100%.  This means we can multiply 10.5 by 4 to get 100% of the fiber the koala ate that day.

10.5*4=\boxed{42}

7 0
3 years ago
Read 2 more answers
Need help will give brainiest
Nikitich [7]

Answer:

1) ∠M

2) MT, GT

3) ∠G

4) not enough information...because we are given two congruent sides but an angle that is not included.

5) SAS because two sides are congruent (including the one they share) and an included angle.

6) SSS because three sides are congruent (including the one they share).

6 0
3 years ago
50 POINTS!!!!<br><br> Find the value of x.<br><br> 7<br><br> 10<br><br> 14<br><br> 17
mote1985 [20]

Answer:

  7

Step-by-step explanation:

The segment perpendicular to the chord bisects it. The hash marks indicate that both chords are the same length, so their distance from the center is the same. x = 7

8 0
3 years ago
I need to convert this to scientific notation 13,562,600,000,000.00
Aleks [24]
One thing is you don't have to put the decimal point before the last two zeros. :D just saying... but if you want to then that's okay. 

Anyway doing this scientific notation, you write the number down. 
1) 13562600000000.00 
Next you write times (x) 10
2) 13,562,600,000,000.00 x 10
Then you write the exponent of the number of places you need to move the decimal. REMEMBER: to make a standard notation to scientific notation the number has to be BETWEEN 1 and 10
3) 1.3562 x 10∧11
It might be 15 for you because you might count the two zeros behind the decimal point in standard form. 

I hope this help you out :D

6 0
3 years ago
Other questions:
  • Subtract.<br> −1 1/3 − 1/6
    8·2 answers
  • Three times a number plus five is less than three fourths of the number
    14·2 answers
  • True-False: Please select true or false and click "submit."
    5·2 answers
  • Konnor wants to burn 250 calories while exercising for 45 minutes at the gym. on the treadmill, he can burn 6 cal/min. on the st
    6·1 answer
  • How many time does 2 go into 19
    8·1 answer
  • Someone help please<br><br> Find the sine of
    6·1 answer
  • ANSWER ASAP WILL GIVE BRAINLIEST
    15·1 answer
  • I need help on this do any of y’all know this
    12·1 answer
  • 9 - ? = 8.82
    15·2 answers
  • On a snowy evening only 2/3 of the registered students in Bob's chess
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!