Answer:
64.0
Explanation:
2Mg+O2 ---> 2MgO
use dimentional analysis to find the amount of moles of O2 needed first
4.00molMg x 1.00mol O2/ 2.00 mol Mg=. 2.00 mol O2
using the coefficients you can see the mole ratio for O2:Mg the mole ratio is 1:2 which is why there is 1 mole on the top for 2 moles on the bottom. The Mg would cancel and multiply 4 by 1 then divide by 2, or multipy 4 by 1/2
Now that you have the moles of O2 you use the molar mass to find the grams in 2 moles of O2
2.00 mol O2 x 32.0g/1.00 mol = 64.0 g
multiply 2 by 32
Answer:
1:C as all metal are good conductors of heat & electricity
2:D conductivity as it needs delocalized electrons normaly
3:B good conductors of heat & electricity
Answer:
4.87g
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass of solution = 0.35kg
Molality = 0.238 m
Mass of NaCl =..?
Step 2:
Determination of the number of mole of NaCl in the solution.
Molality of a solution is simply defined as the mole of solute per unit kg of the solvent. It is given as:
Molality = mol of solute /mass of solvent (kg)
With the above formula, we calculate the mole of NaCl present in the solution as follow:
Molality = mol of solute /mass of solvent (kg)
0.238 = mol of NaCl /0.35
Cross multiply
mol of NaCl = 0.238 x 0.35
mol of NaCl = 0.0833 mol
Step 3:
Determination of the mass of NaCl in 0.0833 mol of NaCl.
This is illustrated below:
Number of mole NaCl = 0.0833 mol
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass of NaCl =..?
Mass = number of mole x molar Mass
Mass of NaCl = 0.0833 x 58.5
Mass of NaCl = 4.87g
Therefore, 4.87g of NaCl is contained in the solution.