Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:

Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Answer:
4N
Explanation:
because the net force is greater in the right direction
You are attracting electricity<span />