Answer:
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Explanation:
Given data:
Atomic mass of silicon= ?
Percent abundance of Si-28 = 92.21%
Atomic mass of Si-28 = 27.98 amu
Percent abundance of Si-29 = 4.70%
Atomic mass of Si-29 = 28.98 amu
Percent abundance of Si-30 = 3.09%
Atomic mass of Si-30 = 29.97 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass)+(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (92.21×27.98)+(4.70×28.98)+(3.09×29.97) /100
Average atomic mass = 2580.04 +136.21+92.61 / 100
Average atomic mass = 2808.86 / 100
Average atomic mass = 28.08amu.
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
The data indicates a direct relationship with a positive slope.
<h3>What is direct relationship?</h3>
Direct relationship is a type of relation in which if one factor increases the other will also increases and vice versa. This data represents direct relationship because the increase occur in one value causes increase of another value so we can conclude that the data indicates a direct relationship with a positive slope.
Learn more about relationship here: brainly.com/question/25862883
The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>