Answer:
120.0 kJ
Explanation:
- First we convert the given mass of C to moles:
30.00 g C ÷ 12g/mol = 2.5 mol
- The ΔH° value given by the problem, is the heat absorbed when 5 moles of C react.
So when we have<u> half the moles of C</u> (2.5 instead of 5.0), t<u>he heat absorbed will also be half</u>, thus the answer is:
Gaining electrons would mean that it is near the stable octet, so it needs more.
Right side would be the answer
D. Internal organs, Organs will break down and be eaten by bugs and such postmortem
Explanation:
1) Initial mass of the Cesium-137=
= 180 mg
Mass of Cesium after time t = N
Formula used :
Half life of the cesium-137 =
= initial mass of isotope
N = mass of the parent isotope left after the time, (t)
= half life of the isotope
= rate constant

Now put all the given values in this formula, we get
Mass that remains after t years.

Therefore, the parent isotope remain after one half life will be, 100 grams.
2)
t = 70 years


N = 35.73 mg
35.73 mg of cesium-137 will remain after 70 years.
3)


N = 1 mg
t = ?

t = 224.80 years ≈ 225 years
After 225 years only 1 mg of cesium-137 will remain.