Sorting is a method that could separate those materials
Answer:
The correct answer is cancer therapy, genetic engineering, and detecting thyroid malfunction.
Explanation:
There are numerous applications of radiation in medicine. The most well-known is the use of X-rays. Other than that radiations are also used in the treatment of cancer known as cancer therapy. It is also used in nuclear medicine therapy like the application of radioactive iodine in the treatment of thyroid issues like thyroid cancer. Radiation also has an application in genetic engineering that comprises the production of modifications in the hereditary units of prevailing animals and plants.
Glycosidic bonds in starch and ester bonds in triglycerides. The glycosidic bond is considered to be the covalent synthetic bonds that connection ring-molded sugar particles to different atoms. The frame by a buildup response between a liquor or amine of one particle and the anomeric carbon of the sugar, and hence, might be O-connected or N-connected.
Answer:
covalent bond
Explanation:
a covalent bond forms when electrons are shared between two nonmetals
plz mark as the brainliest
Answer:
0.295 L
Explanation:
It seems your question lacks the final concentration value. But an internet search tells me this might be the complete question:
" A chemist must dilute 47.2 mL of 150. mM aqueous sodium nitrate solution until the concentration falls to 24.0 mM. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Be sure your answer has the correct number of significant digits. "
Keep in mind that if your value is different, the answer will be different as well. However the methodology will remain the same.
To solve this problem we can<u> use the formula</u> C₁V₁=C₂V₂
Where the subscript 1 refers to the concentrated solution and the subscript 2 to the diluted one.
- 47.2 mL * 150 mM = 24.0 mM * V₂
And <u>converting into L </u>becomes:
- 295 mL *
= 0.295 L