Answer:
the experiment measurements might been thrown off
Explanation:
Answer:
Q = 1.08x10⁻¹⁰
Yes, precipitate is formed.
Explanation:
The reaction of CoF₂ with NaOH is:
CoF₂(aq) + 2 NaOH(aq) ⇄ Co(OH)₂(s) + 2 NaF(aq).
The solubility product of the precipitate produced, Co(OH)₂, is:
Co(OH)₂(s) ⇄ Co²⁺(aq) + 2OH⁻(aq)
And Ksp is:
Ksp = 3x10⁻¹⁶= [Co²⁺][OH⁻]²
Molar concentration of both ions is:
[Co²⁺] = 0.018Lₓ (8.43x10⁻⁴mol / L) / (0.018 + 0.022)L = <em>3.79x10⁻⁴M</em>
[OH⁻] = 0.022Lₓ (9.72x10⁻⁴mol / L) / (0.018 + 0.022)L = <em>5.35x10⁻⁴M</em>
Reaction quotient under these concentrations is:
Q = [3.79x10⁻⁴M] [5.35x10⁻⁴M]²
<em>Q = 1.08x10⁻¹⁰</em>
As Q > Ksp, <em>the equilibrium will shift to the left producing Co(OH)₂(s) </em>the precipitate
Answer:
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time.
Explanation:
Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C