Answer:
No
Explanation:
The conclusions from Thomoson's claims would be invalid if his experiment could not be replicated.
<em>One of the attributes of a valid experiment in science is replication. That is, an experiment must be repeatable with similar outcomes under similar conditions as the original experiment when independently performed by another scientist. Once an experiment cannot be replicated, the outcomes of such an experiment become invalid in science.</em>
Hence, <u>Thomoson's conclusion would be invalid if his experiment could not be replicated. </u>
Answer: The partial pressure of oxygen in the mixture if the total pressure is 525 mmHg is 310 mm Hg
Explanation:
mass of nitrogen = 37.8 g
mass of oxygen = (100-37.8) g = 62.2 g
Using the equation given by Raoult's law, we get:

= partial pressure of
= ?

= total pressure of mixture = 525 mmHg


Total moles = 1.94 + 1.35 = 3.29 moles


Thus the partial pressure of oxygen in the mixture if the total pressure is 525 mmHg is 310 mm Hg
Okay, so even if I just gave you the answers, your teacher needs work on it too so it'll be easier/better if I just explain how to do it.
Basically, both sides need to have the same number of molecules. To do this, we make charts. This is the first side of number one:
Na - 1
Mg- 1
F - 2
The subscript gives F two molecules, and the other ones only each have one. This is the second side:
Na- 1
Mg- 1
F- 1
So they're not equal. To fix this, we add coefficients. These are numbers that are going to appear in the front of each compound/element and changes the number of molecules of the WHOLE compound/element. We need two F on the second side, so we'll put a coefficient of 2 in front of NaF. The new chart for the second side is this:
Na- 2
Mg- 1
F- 2
Now we've fixed the F, but now Na is off! So let's go to the first side again and see what we can do. We can put a 2 in front of the Na. The new chart is this:
Na- 2
Mg -1
F- 2
Now both sides are the same. The full new equation is:
2Na + MgF(sub2) = 2NaF + Mg
Basically, do this for all of them. Feel free to ask more questions.
Answer:
The proton gradient produced by proton pumping during the electron transport chain is used to synthesize ATP. Protons flow down their concentration gradient into the matrix through the membrane protein ATP synthase, causing it to spin (like a water wheel) and catalyze conversion of ADP to ATP.