Answer:
13.5 %
Explanation:
First we<u> calculate the mass of 500 mL of water</u>, using <em>its density</em>:
- 500 mL * 1.00 g/mL = 500 g
Then we <u>calculate the mass percent of potassium sulfate</u>, using the formula:
Mass of Potassium Sulfate / Total Mass * 100%
- 78 g / (78 + 500) g * 100 % = 13.5 %
Answer:
Reactants break bonds with consuming the energy and form the new bonds .
Explanation:
As the two molecules interacted with each other , the elements reshuffled the bonds and formed the new ones with shifting the energy and converting it into new products .
Water moves from an area of higher water potential (aka. "more water" in simple language) to an area of lower water potential (aka. "less water" in simple language).
For A, cells in carrots have water stored in their cytoplasm, where many soluble substances may be found (e.g. sodium ions). On the other hand, pure water has no other soluble substances other than the water molecules (I.e. H2O). Pure water will thus have a higher water potential as compared to the water in carrot cells, and so, water will move from pure water into the carrot cells via osmosis down a concentration gradient.
B. Corn syrup is water that has high concentrations of sugars, thus it is very likely to have a lower water potential than the cells of carrots. Water will move from within the cells of carrots and out to the corn syrup, down a concentration gradient.
C. The water in carrot cells will stay the same, since carrot cells have the same water potential as the surrounding solution which has the same water potential as cytoplasm.
Hope this helps! :)
Ethyl palmitate is an organic compound with the chemical formula C18H36O2. It is a colorless solid with a wax-like odor. Chemically, ethyl palmitate is the ethyl ester of palmitic acid.
Ethyl palmitate is used as a hair- and skin-conditioning agent.<span />
Explanation:
its b cz the gain electrons i think