<h2>Answer:</h2>
C) The scientist made an identification
<h2>Explanation:</h2>
The fingerprint is a very certain method for identifying a person, because all human beings have got unique fingerprints. Forensic laboratories have database of all citizens in the area. Hence an identification is done by the results matched with the database information. The two main categories of fingerprint matching techniques are minutiae-based matching and pattern matching and both are them are present in the given database.
Answer:
Potassium sulfate
Explanation:
I searched it up on the internet
Can I please have a brainliest
7<span> to 49 10 to 100. 30 Secs. 3. What is the </span>pH<span> value of pure </span>water<span>? 0 3 </span>7<span> 10 ... How do acids </span>taste<span>? </span>bitter sour<span> sweet salty. 30 Secs. </span>7<span>. How do </span>bases taste<span>? </span>bitter<span> ... 8. Which kind of solution would react with a metal? acidic basic </span>neutral water<span> ... cocoa </span>has<span> a </span>bitter taste<span>. It is most likely which of the following? acid </span><span>base neutral</span>
Answer:
No, it is not sufficient
Please find the workings below
Explanation:
Using E = hf
Where;
E = energy of a photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency
However, λ = v/f
f = v/λ
Where; λ = wavelength of light = 325nm = 325 × 10^-9m
v = speed of light (3 × 10^8 m/s)
Hence, E = hv/λ
E = 6.626 × 10^-34 × 3 × 10^8 ÷ 325 × 10^-9
E = 19.878 × 10^-26 ÷ 325 × 10^-9
E = 19.878/325 × 10^ (-26+9)
E = 0.061 × 10^-17
E = 6.1 × 10^-19J
Next, we work out the energy required to dissociate 1 mole of N=N. Since the bond energy is 418 kJ/mol.
E = 418 × 10³ ÷ 6.022 × 10^23
E = 69.412 × 10^(3-23)
E = 69.412 × 10^-20
E = 6.9412 × 10^-19J
6.9412 × 10^-19J is required to break one mole of N=N bond.
Based on the workings above, the photon, which has an energy of 6.1 × 10^-19J is not sufficient to break a N=N bond that has an energy of 6.9412 × 10^-19J
This problem is very easy to answer. You simply have to look at the subscripts of each element of the compound.
1. For caffeine, which has a molecular formula of C₈H₁₀N₄O₂, it contains 8 atoms of Carbon, 10 atoms of Hydrogen, 4 atoms of Nitrogen and 2 atoms of Oxygen.
2. For Iron(III) Sulfate, which has a molecular formula of Fe₂(SO₄)₃, it contains 2 atoms of Iron, 3 atoms of Sulfur, and 12 atoms of Oxygen.