Answer:
Reaction of lithium with water
Explanation:
The resulting solution is basic because of the dissolved hydroxide. The reaction is exothermic, but the reaction is slower than that of sodium (immediately below lithium in the periodic table).
Answer: I think you have to subtract the distances
Explanation:
Answer :
(A) Br₂ (s) : molecular solids
(B) AgCl (s) : ionic solids
(C) S (s) : atomic solids
(D) CH₄ (s) : molecular solids
Explanation :
Molecular solids : It is defined as the solids in which they are held together by covalent forces, dipole interactions as attractive forces etc.
Ionic solids : It is defined as the solids in which the atoms composed with oppositely charged ions.
Atomic solids : It is defined as the solids in which the molecules are held together by covalent forces and also includes pure substance.
(A) Br₂ (s)
It is molecular solids because they are held together by covalent forces.
(B) AgCl (s)
It is ionic solids because in this atoms composed with oppositely charged ions.
(C) S (s)
It is atomic solids because it is a pure substance.
(D) CH₄ (s)
It is molecular solids because they are held together by covalent forces.
Here we have to get the temperature and pressure at which helium gas mostly behaves as ideal gas.
Helium (He) behave most like an ideal gas upto 24K temperature and 0 atm pressure.
The deviation of a real gas to ideal gas occurs at high temperature and low pressure.
The deviation of ideal gas to real gas occurs on taking into account the van der waals' force of attraction between the gas molecules. Now, the van der waals' interaction depends upon the polarisibility of the gas molecule.
As helium (He) is non-polarisable and very small (atomic number 2) it mostly behaves as ideal gas upto 24K temperature and 0 atm pressure.
Although the deviation from the ideal gas behavior to real gas is not so prominent at little high temperature also. Upto 50K it mostly behaves like an ideal gas.