Answer:
The van't Hoff factor = 3.20
Explanation:
Step 1: data given
Osmotic pressure of a 0.050 M Solution is 3.85 atm
Temperature = 20.0 °C
Step 2:
Osmotic pressure depends on the molar concentration of the solute but not on its identity.
We can calculate the osmotic pressure by:
π = i.M.R.T
⇒ with π = osmotic pressure = 3.85 atm
⇒ with i = van 't Hoff factor = TO BE DETERMINED
⇒ with M = molar concentration of the solution =0.050 M
⇒ with R = gas constant =0.08206 L * atm / mol* K)
⇒ with T = Temperature of the solution =20°C = 293 K
i = π / M.R.T
i = 3.85 / 0.050*0.08206*293
i = 3.20
The theoretical Van't Hoff factor is 4:
AlCl3(aq) → Al^3+(aq) + 3Cl^-(aq)
AlCl3 dissociates in 1 mol Al^3+ + 3 moles Cl-
Due to the interionic atractions the Van't hoff factor is less than the theoretical value of 4
To solve the question we will assume that the gas behaves like an ideal gas, that is to say, that there is no interaction between the molecules. Assuming ideal gas we can apply the following equation:

Where,
P is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is a constant
T is the temperature
Now, we have two states, an initial state, and a final state. The conditions for each state will be.
Initial state (1)
P1=975Torr=1.28atm
V1=3.8L
T1=-18°C=255.15K
Final state(2), STP conditions
P2=1atm
T2=273.15K
V2=?
We will assume that the number of moles remains constant, so the nR term of the first equation will be constant. For each state, we will have:

Since nR is the same for both states, we can equate the equations and solve for V2:

We replace the known values:

At STP conditions the gas would occupy 5.2L. First option
2 HBr + Mg(OH) 2 yields Mg(Br) 2 + 2 H2O
M1V1 = M2V2
(0.245 M)(37.5 mL) = (M2)(18.0 mL)
9.1875 = (M2)(18.0 mL)
9.1875/(18.0 mL) = (M2)(18.0 mL)/(18.0 mL)
0.51041
this is not the complete answer as the mol to mol ratio must be considered!
For every 2 mols of HBr there is 1 mole of <span>Mg(OH)2; ratio = 2:1
</span>0.51041 / 2 = 0.25520
M2 = 0.25520
0.25520 M of<span> Mg(OH)2 solution</span>
Answer:
A family is a vertical column .
The elements in a family have similar chemical properties.
The volume of the oxygen gas at standard temperature is 41.36 liters.
The given parameters;
- <em>initial volume of oxygen, V₁ = 45 L</em>
- <em>temperature of oxygen, T₁ = 24 ⁰C = 297 K</em>
- <em>standard temperature, T₂ = 0 ⁰C = 273 K</em>
<em />
The volume of the oxygen gas at standard temperature is determined by applying Charles law as shown below;

Thus, the volume of the oxygen gas at standard temperature is 41.36 L.
Learn more here:brainly.com/question/16927784