You literally need to apply the formula

where
is the mass and
is the speed
Answer:
3x-2c=5
3x=5-2c
x=<u>5</u><u>-</u><u>2</u><u>c</u>
3
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
y = 7x - 4x²
<span>7x - 4x² = 0 </span>
<span>x(7 - 4x) = 0 </span>
<span>x = 0, 7/4 </span>
<span>Find the area of the bounded region... </span>
<span>A = ∫ 7x - 4x² dx |(0 to 7/4) </span>
<span>A = 7/2 x² - 4/3 x³ |(0 to 7/4) </span>
<span>A = 7/2(7/4)² - 4/3(7/4)³ - 0 = 3.573 </span>
<span>Half of this area is 1.786, now set up an integral that is equal to this area but bounded by the parabola and the line going through the origin... </span>
<span>y = mx + c </span>
<span>c = 0 since it goes through the origin </span>
<span>The point where the line intersects the parabola we shall call (a, b) </span>
<span>y = mx ===> b = m(a) </span>
<span>Slope = m = b/a </span>
<span>Now we need to integrate from 0 to a to find the area bounded by the parabola and the line... </span>
<span>1.786 = ∫ 7x - 4x² - (b/a)x dx |(0 to a) </span>
<span>1.786 = (7/2)x² - (4/3)x³ - (b/2a)x² |(0 to a) </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (b/2a)a² - 0 </span>
<span>1.786 = (7/2)a² - (4/3)a³ - b(a/2) </span>
<span>Remember that (a, b) is also a point on the parabola so y = 7x - 4x² ==> b = 7a - 4a² </span>
<span>Substitute... </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (7a - 4a²)(a/2) </span>
<span>1.786 = (7/2)a² - (4/3)a³ - (7/2)a² + 2a³ </span>
<span>(2/3)a³ = 1.786 </span>
<span>a = ∛[(3/2)(1.786)] </span>
<span>a = 1.39 </span>
<span>b = 7(1.39) - 4(1.39)² = 2.00 </span>
<span>Slope = m = b/a = 2.00 / 1.39 = 1.44</span>
The answer to this question is:
<span>An ant looks up to the top of a tree with an angle of elevation of 38. if the ant is 43 feet from the base of the tree, what is the height of the tree, to the nearest tenth?
"33.6 Ft"
Hoped this helped, Vickicoward7545
Your Welcome :)</span>
First, write 8x^3 in exponential form (8 is basically the same as 2^3)
So that you have 2^3*x^3+1
Multiply the terms with equal exponents by multiply the bases (1 is basically the same as 1^3)
So that it becomes (2x)^3+1^3
Then, using a^3+b^3 equals (a+b)(a^2-2ab+b^2), factor the expression so that it becomes
(2x+1)((2x)^2-2x+1^2)
Expand the second bracket
So the two factors are (2x+1) and (4x^2-2x+1)