Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
Answer:
90.99 or 91.0
Explanation:
Using the balanced equation, you convert 38.5g of ethanol to moles of water. From there, you plug the values into the Ideal Gas Equation: PV=nRT.
Answer : The percentage reduction in intensity is 79.80 %
Explanation :
Using Beer-Lambert's law :



where,
A = absorbance of solution
C = concentration of solution = 
l = path length = 2.5 mm = 0.25 cm
= incident light
= transmitted light
= molar absorptivity coefficient = 
Now put all the given values in the above formula, we get:



If we consider
= 100
then, 
Here 'I' intensity of transmitted light = 20.198
Thus, the intensity of absorbed light
= 100 - 20.198 = 79.80
Now we have to calculate the percentage reduction in intensity.


Therefore, the percentage reduction in intensity is 79.80 %
Answer:
-1
Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
<u>Δn = (2)-(2+1) = -1 </u>
Thus, Kp is:
Energy is released when a new bonds form.