Answer:
Time take to deposit Ni is 259.02 sec.
Explanation:
Given:
Current
A
Faraday constant

Molar mass of Ni

Mass of Ni
g
First find the no. moles in Ni solution,
Moles of Ni 
mol
From the below reaction,
⇆ 
Above reaction shows "1 mol of
requires 2 mol of electron to form 1 mol of
"
So for finding charge flow in this reaction we write,

Charge flow
C
For finding time of reaction,

Where
charge flow


sec
Therefore, time take to deposit Ni is 259.02 sec.
Answer: ₉₈²⁵³Cf
253 is a superscript to the left of the symbol, Cf, which represents the mass number, and 98 is a subscript to the left of the same symbol, which represents the atomic number.
Explanation:
1) The alpha decay equation shows that the isotope Fm - 257, whose nucleus has 100 protons and 157 neutrons, emitted an alpha particle (a nucleus with 2 protons and 2 neutrons).
2) Therefore:
i) the mass number decreased in 4, from 257 to 257 - 4 = 253.
2) the atomic number decreased in 2, from 100 to 100 - 2 = 98.
3) Hence the formed atom has atomic number 98, which is californium, Cf, and the isotope is californium - 253.
4) The item that completes the given alpha decay reaction is:
₉₈²⁵³ Cf.
5) The complete alfpha decay reaction is:
₁₀₀²⁵⁷ Fm → ₉₈²⁵³Cf + ₂⁴He
You can verify the mass balance:
257 = 253 + 4, and
100 = 98 + 2
Where does most of the mass of the universe come from? In ordinary matter, most of the mass is contained in atoms, and the majority of the mass of an atom resides in the nucleus, made of protons and neutrons. Protons and neutrons are each made of three quarks.
Answer:
H(aq) + NO3 (aq) + HF(aq)
Explanation:
In the given mixture of HNO3 (Nitric Acid) and HF (hydrofluoric acid) in water the major species present are H(aq) + NO3 (aq) + HF(aq).
On the reaction of HNO3 (Nitric Acid) and HF (hydrofluoric acid) in water , it will give a polar solution and will form a homogenous mixture.
Hence, the correct answer is "H(aq) + NO3 (aq) + HF(aq)".
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate