-38 due to the fact the lower the number, the colder it is.
Answer:
The regular price of the balls is $8
Step-by-step explanation:
The sporting goods store sales promotion is as follows;
The price of the third ball after buying two balls at regular price = $1.00
The price of the number of balls Coach John pays for the balls he bought = $136
To buy 24 balls, we have;
2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1
Therefore;
The number of balls bought at regular price = The sum of the 2s = 16 balls
The number of balls bought for $1 = 24 - 16 = 8 balls
Let x represent the regular price of the balls, we have;
16 × x + 8 = 136
16·x = 138 - 8 = 128
x = 128/16 = 8
The regular price of the balls = x = $8.
Answer:
1.8 units.
Step-by-step explanation:
The questions which involve calculating the angles and the sides of a triangle either require the sine rule or the cosine rule. In this question, the two sides that are given are adjacent to each other and the given angle is the included angle. This means that the angle is formed by the intersection of the two lines. Therefore, cosine rule will be used to calculate the length of the largest side of the triangle. The cosine rule is:
b^2 = a^2 + c^2 - 2*a*c*cos(B).
The question specifies that a=0.5, B=120°, and c=1.5. Plugging in the values:
b^2 = 0.5^2 + 1.5^2 - 2(0.5)(1.5)*cos(120°).
Simplifying gives:
b^2 = 3.25.
Taking square root on the both sides gives b = 1.8 (rounded to the nearest tenth).
This means that the length of the third side is 1.8 units!!!
I think that these ordered pairs would be the answer (-2,-1).
Answer:
The appropriate hypotheses for performing a significance test is:
Step-by-step explanation:
Last year, the mean score on the state’s math test was 51. The administrators have trained the teachers in a new method of teaching math hoping to raise the scores on this standardized test this year.
At the null hypothesis, we test if the mean score this year is the same as last year, that is:
At the alternate hypothesis, we test if the mean score improved this year from last, that is:
The appropriate hypotheses for performing a significance test is: