Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
Answer:
heueiehhe8ehh38ehgeyegdhowgw8ehieerr
Correct me if I’m wrong but I think it’s A
Explanation:
Runner A has already reached about 50m in around 5s.
The concave mirror is a spherical-shaped mirror that has an inner curved surface. Hence, option (4) is correct.
What is a concave mirror?
The concave mirrors are spherical-shaped mirrors that are painted on the outward surface. It is also known as the converging mirror, having the recessed inner reflecting surface.
- The concave mirrors are generally used for the purpose to focus the light. For that, they might have a reflecting surface, curved inwards, and the reflection of light is limited to the single focal point.
- The reflecting surface of the concave mirror has its vertex or midpoint lying farther away from the objects than the edges.
Thus, we can conclude that the surface of the concave mirror is curved inward. Hence, option (4) is correct.
Learn more about the concave mirror here:
brainly.com/question/13300307