In diesel engines, the chemical energy in the fuel is changed to heat energy, causing the pistons to expand via mechanical energy. The mechanical energy is finally converted to kinetic energy, which is observed as the movement of the vehicle.
The energy required to separate a mole of an ionic solid into gaseous ions
Answer:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
Explanation:
For the reaction:
H₂C₂O₄(g) → CO₂(g) + HCOOH(g)
At t = 0, the initial pressure is just of H₂C₂O₄(g). At t= 20000 s, pressures will be:
H₂C₂O₄(g) = P₀ - x
CO₂(g) = x
HCOOH(g) = x
P at t=20000 is:
P₀ - x + x + x = P₀+x. That means P at t=20000s - P₀ = x
For 1st point:
x = 92,8-65,8 = 27
Pressure of H₂C₂O₄(g) at t=20000s: 65,8-27 = 38,8
2nd point:
x = 130-92,1 = 37,9
H₂C₂O₄(g): 92,1 - 37,9 = 54,2
3rd point:
x = 157-111 = 46
H₂C₂O₄(g): 111-46 = 65
Now, as the rate law is :
v = k P[H₂C₂O₄]
Based on integrated rate law, k is:
(- ln P[H₂C₂O₄] + ln P[H₂C₂O₄]₀) / t = k
1st point:
k = 2,64x10⁻⁵
2nd point:
k = 2,65x10⁻⁵
3rd point:
k = 2,68x10⁻⁵
The averrage of this values is:
k = 2,66x10⁻⁵
That means law is:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
I hope it helps!
Answer:
is the value of the equilibrium constant at this temperature.
Explanation:
Equilibrium constant in terms of partial pressure is defined as the ratio of partial pressures of products to the partial pressures of reactants each raised to the power equal to their stoichiometric ratios. It is expressed as 

Partial pressures at equilibrium:



The equilibrium constant in terms of pressures is given as:


is the value of the equilibrium constant at this temperature.