Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.
There should be mass balance and the charge balance between the reactants and the products
Mass balance : total no of individual atoms of each type should be balanced before and after the reaction
Charge balance : Overall charge of the reactants should be balanced with the overall charge of the products
You can balance,
1)by just looking at it
2)by Algebraic method given above or
3)by the redox method
You need to know how to get the oxidation numbers in order to use the oxidation method
Chlorine will have the slowest rate of diffusion because it has the highest relative molecular mass of 71 followed by O₂ with 32, then Neon 20 then He with 2
The rate of diffusion of a gas is inversely proportional to the square root of its relative molecular mass.
At room temperature, O2 is in gaseous state.
a gas has no definite volume or definite shape. It occupies volume of container and attains shape of container only.
Thus
It has no definite volume and takes the shape of its container.
Its particles move fast enough to overcome the attraction between them.: the gas molecules have minimum intermolecular interactions and have high kinetic energy.
It has more energy than it would at a cooler temperature: the kinetic energy of gas molecules increases with increase in temperature. Thus the energy increases with temperature and decreases with decrease in temperature.
Answer:
you need to include the bottom portion, not enough info
Explanation: