Answer:
0.375 L
Explanation:
We know that at neutralization, the number of mol of acid must equal the number of equivalents of base.
This is a reaction 1:1 acid to base:
HClO₄ + NaOH ⇒ NaClO₄ + H₂O
We re given the moles of the base indirectly since we know the volume and molarity. From there we can calculate the volume of HClO₄.
Moles NaOH = 0.115 L x 0.244 M = 0.115 L x 0.244 mol/L =0.028 mol
Thus we require 0.028 mol of HClO₄ in the pechloric acid solution:
Molarity = # moles / V ⇒ V = # moles / M
V = 0.028 mol / 0.0748 mol/L = 0.375 L
Note that this problem can be solved in just one step since
M(HClO₄) x V(HClO₄) = M(NaOH) x V(NaOH) ⇒
V(HClO₄) = M(NaOH) x V(NaOH) / M(HClO₄)
Answer:
e. T₂= 4T₁
Explanation:
Initially, we have a number of moles (n₁) a gas sample at a certain pressure (P), temperature (T₁) and volume (V). We can relate these variables through the ideal gas equation.
P . V = n₁ . R . T₁
where,
R is the ideal gas constant
We can rearrange this equation like:

If only one fourth of the initial molecules remain n₂ = 1/4 n₁. The new temperature (T₂) assuming pressure and temperature remain constant is:

Imatinib is a small molecule kinase inhibitor. The BCR-ABL kinase can phosphorylate a series of downstream substrates, leading to proliferation of mature granulocytes. Bcr-Abl kinase substrate is the tyrosine. The Protein Tyrosine Kinase activity is an important requirement for malignant transformation, and that it cannot be complemented by any downstream effector, though not all interactions of BCR-ABL with other proteins are phosphotyrosine dependent.
Answer:
20.0
Explanation:
NaOH = (25.0) (0.100m) \ 0.125M = 20.0mL
Answer: Option (c) is the correct answer.
Explanation:
In liquids, molecules are held by slightly less strong intermolecular forces of attraction as compared to solids.
Hence, molecules of a liquid are able to slide past each other as they have more kinetic energy than the molecules of a solid.
As a result, liquids are able to occupy the shape of container in which they are placed. Also, liquids have fixed volume but no fixed shape.
Thus, we can conclude that liquids have a variable shape and a fixed volume.