Answer:

Explanation:
m = Mass of water = 749511.5 kg
c = Specific heat of water = 4182 J/kg ⋅°C
= Change in temperature = 
Cost of 1 GJ of energy = $2.844
Heat required is given by

Amount of heat required to heat the water is
.
Cost of heating the water is
Cost of heating the water to the required temperature is
.
Answer:
where are the answer chioces
Explanation:
Answer:
Connect the test light in series with the negative post, and start pulling feed wires. The first to check is the heavy charging wire from the alternator. A bad or leaky diode in an alternator is a very common source of overnight battery drain. Connect wires one at a time to see what lead is drawing current.
Answer:
80.7lbft/hr
Explanation:
Flow rate of water in the system = 3.6x10^-6
The height h = 100
1s = 1/3600h
This implies that
Q = 3.6x10^-6/[1/3600]
Q = 0.0000036/0.000278
Q = 0.01295
Then the power is given as
P = rQh
The specific weight of water = 62.3 lb/ft³
P = 62.3 x 0.01295 x 100
P = 80.675lbft/h
When approximated
P = 80.7 lbft/h
This is the average power that could be generated in a year.
This answers the question and also corresponds with the answer in the question.