1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
san4es73 [151]
3 years ago
6

An ice hockey player is skating on an ice rink. The rink has a coefficient of kinetic friction of roughly 0.1. If the normal for

ce on the hockey player is 800. N, what is the frictional force acting on the hockey player?
Engineering
1 answer:
AlekseyPX3 years ago
3 0

Answer:yes

Explanation:he divided by the numnebr of hockey pucks

You might be interested in
Consider a plane composite wall that is composed of two materials of thermal conductivities kA = 0.1 W/m*K and kB = 0.04 W/m*K a
nadya68 [22]

Answer:

q=39.15 W/m²

Explanation:

We know that

Thermal resistance due to conductivity given as

R=L/KA

Thermal resistance due to heat transfer coefficient given as

R=1/hA

Total thermal resistance

R_{th}=\dfrac{L_A}{AK_A}+\dfrac{L_B}{AK_B}+\dfrac{1}{Ah_1}+\dfrac{1}{Ah_2}+\dfrac{1}{Ah_3}

Now by putting the values

R_{th}=\dfrac{0.01}{0.1A}+\dfrac{0.02}{0.04A}+\dfrac{1}{10A}+\dfrac{1}{20A}+\dfrac{1}{0.3A}

R_{th}=4.083/A\ K/W

We know that

Q=ΔT/R

Q=\dfrac{\Delta T}{R_{th}}

Q=A\times \dfrac{200-40}{4.086}

So heat transfer per unit volume is 39.15 W/m²

q=39.15 W/m²

4 0
3 years ago
BCC lithium has a lattice parameter of 3.5089 3 10–8 cm and contains one vacancy per 200 unit cells. Calculate (a) the number of
Tanya [424]

(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰

(b) ρ = n X (AM) / v X Nₐ

<u>Explanation:</u>

<u />

Given-

Lattice parameter of Li  = 3.5089 X 10⁻⁸ cm

1 vacancy per 200 unit cells

Vacancy per cell = 1/200

(a)

Number of vacancies per cubic cm = ?

Vacancies/cm³ = vacancy per cell / (lattice parameter)³

Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³

Vacancies/cm³ = 1.157 X 10²⁰

Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰

(b)

Density is represented by ρ

ρ = n X (AM) / v X Nₐ

where,

Nₐ = Avogadro number

AM = atomic mass

n = number of atoms

v = volume of unit cell

4 0
3 years ago
Unit for trigonometric functions is always "radian". 1. 10 points: Do NOT submit your MATLAB code for this problem (a) Given f(x
RoseWind [281]

Answer:

Below is the required code.

Explanation:

%% Newton Raphson Method

clear all;

clc;

x0=input('Initial guess:\n');

x=x0;

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=10;

i=0;

cc=input('Condition of convergence:\n');

while ep>=cc

i=i+1;

temp=x;

x=x-(f/g);

f=exp(-x)-sin(x)-0.2;

g=-exp(-x)-cos(x);

ep=abs(x-temp);

fprintf('x = %6f and error = %6f at iteration = %2f \n',x,ep,i);

end

fprintf('The solution x = %6f \n',x);

%% End of MATLAB Program

Command Window:

(a) First Root:

Initial guess:

1.5

Condition of convergence:

0.01

x = -1.815662 and error = 3.315662 at iteration = 1.000000

x = -0.644115 and error = 1.171547 at iteration = 2.000000

x = 0.208270 and error = 0.852385 at iteration = 3.000000

x = 0.434602 and error = 0.226332 at iteration = 4.000000

x = 0.451631 and error = 0.017029 at iteration = 5.000000

x = 0.451732 and error = 0.000101 at iteration = 6.000000

The solution x = 0.451732

>>

Second Root:

Initial guess:

3.5

Condition of convergence:

0.01

x = 3.300299 and error = 0.199701 at iteration = 1.000000

x = 3.305650 and error = 0.005351 at iteration = 2.000000

The solution x = 3.305650

>>

(b) Guess x=0.5:

Initial guess:

0.5

Condition of convergence:

0.01

x = 0.450883 and error = 0.049117 at iteration = 1.000000

x = 0.451732 and error = 0.000849 at iteration = 2.000000

The solution x = 0.451732

>>

Guess x=1.75:

Initial guess:

1.75

Condition of convergence:

0.01

x = 227.641471 and error = 225.891471 at iteration = 1.000000

x = 218.000998 and error = 9.640473 at iteration = 2.000000

x = 215.771507 and error = 2.229491 at iteration = 3.000000

x = 217.692636 and error = 1.921130 at iteration = 4.000000

x = 216.703197 and error = 0.989439 at iteration = 5.000000

x = 216.970438 and error = 0.267241 at iteration = 6.000000

x = 216.971251 and error = 0.000813 at iteration = 7.000000

The solution x = 216.971251

>>

Guess x=3.0:

Initial guess:

3

Condition of convergence:

0.01

x = 3.309861 and error = 0.309861 at iteration = 1.000000

x = 3.305651 and error = 0.004210 at iteration = 2.000000

The solution x = 3.305651

>>

Guess x=4.7:

Initial guess:

4.7

Condition of convergence:

0.01

x = -1.916100 and error = 1.051861 at iteration = 240.000000

x = -0.748896 and error = 1.167204 at iteration = 241.000000

x = 0.162730 and error = 0.911626 at iteration = 242.000000

x = 0.428332 and error = 0.265602 at iteration = 243.000000

x = 0.451545 and error = 0.023212 at iteration = 244.000000

x = 0.451732 and error = 0.000187 at iteration = 245.000000

The solution x = 0.451732

>>

Explanation:

The two solutions are x =0.451732 and 3.305651 within the range 0 < x< 5.

The initial guess x = 1.75 fails to determine the solution as it's not in the range. So the solution turns to unstable with initial guess x = 1.75.

7 0
3 years ago
what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.
Leviafan [203]

Answer:

robotic technology    

Explanation:

Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.

Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.

One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.

Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.

Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.  

3 0
3 years ago
What would happen if an exposed film was accidentally placed in the fixer before being placed in the developer
Eduardwww [97]
Do you still want this answered
5 0
3 years ago
Other questions:
  • Calculate the impedance of a 20 mH inductor at a frequency of 100 radians/s. Calculate the impedance of a 500 µF inductor at a f
    9·2 answers
  • Two Carnot engines operate in series such that the heat rejected from one is the heat input to the other. The heat transfer from
    13·1 answer
  • A circuit with ____ -diameter connecting wires at a _____ temperature will have the least electrical resistance.
    13·1 answer
  • Why dues brainy exist as a learning platform when it is just full of answers and you won't learn anything?
    8·1 answer
  • Which of the following refers to software designed to alter system files and utilities on a victim’s system with the intention o
    15·1 answer
  • Which of the following answers regarding Mealy and Moore Machines are true?
    7·1 answer
  • Looking back, I was sure that I was going to die that November afternoon. Tornado watches in Alabama are as common as eggs are f
    15·2 answers
  • Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of t
    14·1 answer
  • A force is a push or pull in A.a circle B.an arc C.a straight line
    6·1 answer
  • Which band has an average of $3.58 per hour of parking?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!