1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
2 years ago
13

8. What is the density of an object with a mass of 290.5 g and volume of 83 cm 3?​

Engineering
1 answer:
Leni [432]2 years ago
6 0
Answer:

The density would be 218.5
You might be interested in
Three bars each made of different materials are connected together and placed between two walls when the temperature is 12 oC. D
slega [8]

Answer:

F = 9.11 x 10³ N = 9.11 KN

Explanation:

The areas, lengths, young's modulus, and coefficient of linear thermal expansion are given in the diagram. First we find the equivalent change in length due to temperature change:

ΔL = (ΔL)steel + (ΔL)brass + (ΔL)Copper

ΔL = (∝s)(Ls)(ΔT) + (∝b)(Lb)(ΔT) + (∝c)(Lc)(ΔT)

where,

ΔL = Equivalent Change in Length = ?

ΔT = Change in Temperature = 25°C - 12°C = 13°C

Ls = Length of Steel Segment = 300 mm = 0.3 m

Lb = Length of Brass Segment = 200 mm = 0.2 m

Lc = Length of Copper Segment = 100 mm = 0.1 m

Therefore,

ΔL = (12 x 10⁻⁶ °C⁻¹)(0.3 m)(13 °C) + (21 x 10⁻⁶ °C⁻¹)(0.2 m)(13 °C) + (17 x 10⁻⁶ °C⁻¹)(0.1 m)(13 °C)

ΔL = 46.8 x 10⁻⁶ m + 54.6 x 10⁻⁶ m + 22.1 x 10⁻⁶ m

ΔL = 123.5 x 10⁻⁶ m   ----------------------- equation (1)

Now, we calculate this deflection in terms of an applied force (F):

ΔL = (F)(Ls)/(Es)(As) + (F)(Lb)/(Eb)(Ab) + (F)(Lc)/(Ec)(Ac)

ΔL = (F)(0.3 m)/(200 x 10⁹ Pa)(200 x 10⁻⁶ m²) + (F)(0.2 m)/(100 x 10⁹ Pa)(450 x 10⁻⁶ m²) + (F)(0.1 m)/(120 x 10⁹ Pa)(515 x 10⁻⁶ m²)

ΔL = F(7.5 x 10⁻⁹ m/N + 4.44 x 10⁻⁹ m/N + 1.61 x 10⁻⁹ m/N)

ΔL = F(13.55 x 10⁻⁹ m/N)   --------------------- equation (1)

Comparing equation (1) and equation (2):

123.5 x 10⁻⁶ m = F(13.55 x 10⁻⁹ m/N)

F = (123.5 x 10⁻⁶ m)/(13.55 x 10⁻⁹ m/N)

<u>F = 9.11 x 10³ N = 9.11 KN</u>

6 0
2 years ago
You are an engineer working in a auto crash test lab. Some members of your team have raised objections against the use of cadave
Nikolay [14]

Answer: Application.

Explanation:

The question on wether to contine the use of cadavers in the lab for test is being centered around its application. Cadaver which is same as a corpse or dead body is used in crash site during automobil test in lab, some of this cadavers are been disrespected with their applications in the automobile industries because many didn’t consent to be used in those experiments or test.

5 0
3 years ago
What do you understand by the term phase angle?<br>​
aleksandrvk [35]

Answer:

The angle between the earth and the sun as seen from a planet is called phase angle.

5 0
2 years ago
The temperature of a system rises by 10 °C during a heating process. Express the rise in temperature of K, R, and °F.
Lorico [155]

Explanation:

Given T = 10 °C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (10 + 273.15) K = 283.15 K

<u>T = 283.15 K </u>

The conversion of T( °C) to T(F) is shown below:

T (°F) = (T (°C) × 9/5) + 32  

So,

T (°F) = (10 × 9/5) + 32 = 50 °F

<u>T = 50 °F</u>

The conversion of T( °C) to T(R) is shown below:

T (R) = (T (°C) × 9/5) + 491.67

So,

T (R) = (10 × 9/5) + 491.67 = 509.67 R

<u>T = 509.67 R</u>

6 0
3 years ago
A fire hose nozzle has a diameter of 1.125 in. According to some fire codes, the nozzle must be capable of delivering at least 2
Furkat [3]

Answer:

P_{1} = 403,708\,kPa\,(58.553\,psi)

Explanation:

Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

\frac{P_{1}}{\rho\cdot g} = \frac{P_{2}}{\rho \cdot g} + \frac{v^{2}}{2\cdot g}

The initial pressure is:

P_{1} = P_{2}+ \frac{1}{2}\cdot \rho v^{2}

The speed at outlet is:

v=\frac{\dot Q}{\frac{\pi}{4}\cdot D^{2}}

v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }

v\approx 24.592\,\frac{m}{s}\,(80.682\,\frac{ft}{s} )

The initial pressure is:

P_{1} = 101.325\times 10^{3}\,Pa+\frac{1}{2}\cdot (1000\,\frac{kg}{m^{3}} )\cdot (24.592\,\frac{m}{s} )^{2}

P_{1} = 403,708\,kPa\,(58.553\,psi)

7 0
3 years ago
Read 2 more answers
Other questions:
  • Define initial set and final set. Briefly discuss one method used to determine them. The following laboratory tests are performe
    12·1 answer
  • 2. One of the following systems is not typically used with floor
    5·1 answer
  • A rectangular block having dimensions 20 cm X 30 cm X 40 cm is subjected to a hydrostatic stress of -50 kPa (i.e. under compress
    15·1 answer
  • Name the important trees of tropical monsoon forest​
    11·1 answer
  • Read a 4 character number. Output the result in in the following format, Input 9873, Output 3 *** 7 ******* 8 ******** 9 *******
    8·1 answer
  • A beam spans 40 feet and carries a uniformly distributed dead load equal to 2.2 klf (not including beam self-weight) and a live
    15·1 answer
  • Multiple Choice
    7·1 answer
  • What Number Am I?
    13·1 answer
  • If y varies inversely as x, and y =23 when x=8, find y when x=4
    14·1 answer
  • 1)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!