Concentration of a solution can be expressed in terms of molarity and molality
Molarity is the number of moles of solute in a liter of a solution.
Molarity (M) = Moles of solute/Volume(litres) of solution
Molality is the number of moles of solute in one kg of the solution
Molality (m) = Moles of solute/Mass (kg) of solution
Therefore if the volume or the mass of the solution is changed this would affect the concentration.
In addition, volume is a quantity which depends on temperature. However, mass is independent of temperature. Therefore any changes in temperature, can also bring about a change in the molarity of the solution.
Answer:
Cancel out CO because it appears as a reactant in one intermediate reaction and a product in the other intermediate reaction.
Explanation:
The CO appears twice hence in he intermediate reaction it only forms path of the enabling reagents and it further reacts to form the final product. Accounting for the CO in the intermediate reaction that undergoes further reaction will impact on the stoichiometry of the reaction.
Explanation:
<h3>Conclusion. A good friendship is very difficult to come across. That is why we should appreciate this divine relationship that is based on understanding and feelings. ... A true friend is one of the most precious possessions that one can have in his life.</h3>
Hope it's helpful for Yuh bro!!
Answer:
1-Pentene
Explanation:
If we look at all the options listed, we will notice that the rate of reaction of bromine with each one differs significantly.
For 1-pentene, addition of bromine across the double bond is a relatively fast process. It is usually used as a test for unsaturation. Bromine water is easily decolorized by alkenes.
Cyclohexane, heptane are alkanes. They can only react with chlorine in the presence of sunlight. This is a substitution reaction. It does not occur easily. A certain quantum of light is required for the reaction to occur.
For benzene, bromine can only react with it by electrophilic substitution in which the benzene ring is retained. A Lewis acid is often required for the reaction to occur and it doesn't occur easily.