Answer:
a. equal to
Explanation:
The <em>osmotic pressure</em> is calculated by the formula:
π = <em>i</em> * M * R * T
Where π is the osmotic pressure, M is the concentration, R is a constant, T is temperature and <em>i</em> is the van't Hoff's factor (the number of ions a compound forms when dissolved in water,<u> for both NaCl and KBr is 2</u>).
Because R is always the same, and <u>Temperature and Concentration are equal between the two solutions</u>, the osmotic pressure of both solutions are also equal.
Answer:
This is known as the coefficient factor
Explanation:The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element.
Answer: beta, gamma, alpha
Explanation: Beta is weakest gamma is middle alpha is strongest
(A) gas to liquid
is most likely to take place. This change from gas to liquid is the forming of water molecules. Gas particles have the most energy and therefore speed up the most, whereas solids have the least amount of energy and slow down. The intermediate step from gas to solid is a liquid. We call this process from gas to liquid condensation.
<u>Answer:</u> The amount of heat released is 56 MJ.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of
= 12 kg = 12000 g (Conversion factor: 1 kg = 1000 g)
Molar mass of
= 30 g/mol
Putting values in above equation, we get:

The chemical reaction for hydrogenation of ethene follows the equation:

By Stoichiometry of the reaction:
When 1 mole of ethane releases 140 kJ of heat.
So, 400 moles of ethane will release =
of heat.
Converting this into Mega joules, using the conversion factor:
1 MJ = 1000 kJ
So, 
Hence, the amount of heat released is 56 MJ.