Answer:
d. oligomer it is the correct answer also if you would just search that up it pops up
Answer:
The chemistry will need 2*10⁶ moles of antimony trifluoride.
Explanation:
The balanced reaction is:
3 CCl₄ (g) + 2 SbF₃ (s) → 3 CCl₂F₂(g) + 2 SbCl₃ (s)
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- CCl₄: 3 moles
- SbF₃: 2 moles
- CCl₂F₂: 3 moles
- SbCl₃: 2 moles
You can apply the following rule of three: if by reaction stoichiometry 3 moles of freon are produced by 2 moles of antimony trifluoride, 3*10⁶ moles of Freon are produced from how many moles of antimony trifluoride?

moles of antimony trifluoride= 2*10⁶
<u><em>The chemistry will need 2*10⁶ moles of antimony trifluoride.</em></u>
Answer:
The ratio is 2:1, that is 2mol C / 1mol O2
Explanation:
First check to see if the equation is balanced. It is so now let's find the ratio.
The ratio is the stoichiomeric coefficient of the element or compound.
Carbon : Oxygen
2C : 1 O2 , so 2:1 ..
The intermolecular bonding for HF is van der Waals, whereas for HCL, the intermolecular bonding is hydrogen. Since the van der Waals bond is stronger than hydrogen, HF will have a higher boiling temperature. Since the covalent bond is stronger than van der Waals, HF will have a higher boiling temperature.
Answer:
babe where are u???????!
Explanation:
babe plz text me im lowkey freaking out rn