Answer:
gDNA = "genomic DNA" and cDNA = "complementary DNA." cDNA is classically associated with being reverse transcribed either from all extracted RNA from a tissue or cell (total RNA) including (in eukaryotes) pre-mRNA, ribosomal RNA, tRNA, snoRNA, miRNA and mRNA, etc.) while cDNA obtained only from reverse transcription of the mRNA (expressed eukaryotic cytosolic mRNA) fraction (e.g., by poly[dT]n and random priming) is complementary DNA (cDNA) made from what is called the "transcriptome." Eukaryotes have introns and exons in the gDNA, while prokaryotes do not. So eukaryotic cDNA reverse transcribed from mRNA lacks introns. Prokaryotic-derived cDNA is always complementary to prokaryotic RNA and gDNA (so is always necessary to have a good DNase treatment prior to gene expression analysis by e.g., qPCR for prokaryotic transcriptome work)...
You forgot to put the options, but i believe it is magma.
Answer:
The correct answer is explained below:
Explanation:
- According to the question, heterozygous tall, heterozygous axillary plant has the following genotype, TtAa.
- It produces the following gametes: TA, Ta, tA, ta.
- The heterozygous tall, terminal plant has the following genotype: Ttaa
- It produces the following gametes: Ta, ta.
- Crossing them,
TA Ta tA ta
Ta TTAa TTaa TtAa Ttaa
(Tall, Axillary) (Tall, Terminal) (Tall, Axillary) (Tall, Terminal)
ta TtAa Ttaa ttAa ttaa
(Tall, Axillary) (Tall, Terminal) (Short, Axillary) (Short, Terminal)
- The genotypes of the offspring obtained are: TTAa, TTaa, TtAa, Ttaa, ttAa and ttaa respectively.
- The phenotypes obtained are:
- Tall, Axillary = 3.
- Tall, Terminal = 3.
- Short, Axillary = 1.
- Short, Terminal = 1.
Proteins are a macromolecule and protein contains phosphorus atoms