(p + q)⁵
(p + q)(p + q)(p + q)(p + q)(p + q)
{[p(p + q) + q(p + q)][p(p + q) + q(p + q)](p + q)}
{[p(p) + p(q) + q(p) + q(q)][p(p) + p(q) + q(p) + q(q)](p + q)}
(p² + pq + pq + q²)(p² + pq + pq + q²)(p + q)
(p² + 2pq + q²)(p² + 2pq + q²)(p + q)
{[p²(p² + 2pq + q²) + 2pq(p² + 2pq + q²) + q²(p² + 2pq + q²)](p + q)}
{[p²(p²) + p²(2pq) + p²(q²) + 2pq(p²) + 2pq(2pq) + 2pq(q²) + q²(p²) + q²(2pq) + q²(q²)](p + q)}
(p⁴ + 2p³q + p²q² + 2p³q + 4p²q² + 2pq³ + p²q² + 2pq³ + q⁴)(p + q)
(p⁴ + 2p³q + 2p³q + p²q² + 4p²q² + p²q² + 2pq³ + 2pq³ + q⁴)(p + q)
(p⁴ + 4p³q + 6p²q² + 4pq³ + q⁴)(p + q)
p⁴(p + q) + 4p³q(p + q) + 6p²q²(p + q) + 4pq³(p + q) + q⁴(p + q)
p⁴(p)+ p⁴(q) + 4p³q(p) + 4p³q(q) + 6p²q²(p) + 6p²q²(q) + 4pq³(p) + 4pq³(q) + q⁴(p) + q⁴(q)
p⁵ + p⁴q + 4p⁴q + 4p³q² + 6p³q² + 6p²q³ + 4p²q³ + 4pq⁴ + pq⁴ + q⁵
p⁵ + 5p⁴q + 10p³q² + 10p²q³ + 5pq⁴ + q⁵
Answer:
$86.60
Step-by-step explanation:
1. Subtract 8-3=5
2. Multiply 3*8.95=$26.85
3. Multiply 5*11.95=$59.75
4. Add $26.85+$59.75=$86.60
Every triangle has a total of 180 degrees. If one angle measure is 100, then 180-100 is 80. This means that the other two angle measures have a total of 80. As angle j and k are equal, we divide 80 by 2, to get 40. This means that the measure of both angle j and k is 40 degrees. The measure of angle j is 40 degrees.
The width would be 1 inch.
Given: L = length = 5W; P = perimeter = 2(L+W) = 12 inches
Required: W = width;
Formula: P=2(L+W)
Solution:
12 in = 2 (L + W)
6 in = L + W
6 in = 5W + W
6 in = 6W
1 in = W
Cross check:
P = 2(L + W)
12 in = 2(5 in + 1 in)
12 in = 2(6 in)
12 in = 12 in
Answer:
C≈75.4in
Step-by-step explanation:
C=2πr=2·π·12≈75.39822in