Answer:
beta particles
Explanation:

Given mass = 14.0 g
Molar mass = 137 g/mol

According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number
of particles.
1 mole of cesium contains atoms =
0.102 moles of cesium contains atoms =
The relation of atoms with time for radioactivbe decay is:

Where
=atoms left undecayed
= initial atoms
t = time taken for decay = 3 minutes
= half life = 30.0 years =
minutes
The fraction that decays : 
Amount of particles that decay is = 
Thus
beta particles are emitted by a 14.0-g sample of cesium-137 in three minutes.
Answer:
Power
Explanation:
Power is defined as the rate of doing work with reference to the time spent and the formula is force multiplied by velocity.
In this case, if two people lift identical stacks of books the same distance and one person does the job twice as fast, then it means the velocity in the case is doubled which will also lead to an increase in the Power .
Answer:
Explanation:
A combination of two controlled variables will make an experiment the most reliable.
Variables are the values that we take under any circumstance while doing an experiment so that we can keep on changing and get new results at the end.
It is important to have them in pair so that two values can be kept on changing in terms of any constant condition. This will help to get better results in over all experiment data.
The increase in temperature of the metal hammer is 0.028 ⁰C.
The given parameters:
- <em>mass of the metal hammer, m = 1.0 kg</em>
- <em>speed of the hammer, v = 5.0 m/s</em>
- <em>specific heat capacity of iron, 450 J/kg⁰C</em>
The increase in temperature of the metal hammer is calculated as follows;

where;
<em>c is the </em><em>specific heat capacity</em><em> of the metal hammer</em>
<em />
Assuming the metal hammer is iron, c = 450 J/kg⁰C

Thus, the increase in temperature of the metal hammer is 0.028 ⁰C.
Learn more about heat capacity here: brainly.com/question/16559442
Answer: 1300m
Explain: from km to m times 1000