The smaller the area the greater the pressure, while the bigger the smaller the pressure. So they are inversely proportional
Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)
The gravitational acceleration at any distance r is given by

where G is the gravitational constant, M the Earth's mass and r is the distance measured from the center of the Earth.
The Earth's radius is
, so the meteoroid is located at a distance of:

And by substituting this value into the previous formula, we can find the value of g at that altitude:

D. Equal to zero.
Because the forces balance each other.
F = m₁ a₁ = m₂ a₂
if m₁ = m and m₂ = 2m :
F = ma₁ = 2m a₂ ⇒ a₁ = 2 a₂
since v = at + v₀ with t = 3, v₀ = 0 ⇒ v = 3a:
v₁ = 2 v₂
since p = vm with v₁ = 2v and v₂ = v :
p₁ = v₁m₁ = 2v ⁻ m
p₂ = v₂m₂ = v ⁻ 2m
p₁ = p₂