The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
The answer is either c or b
-- the little ball going round and round a spinning roulette wheel
-- a car driving around a curve in the road at a constant speed
-- any Earth satellite in a perfectly circular orbit.
The closest thing to it is a geostationary TV satellite ... they try hard
to make those orbits perfectly circular, and keep correcting them to
stay circular.
When atoms, the basic units of chemical elements, combine into chemical compounds, they form molecules. Organisms have many different kinds of molecules, from water and simple salts to complex molecules such as carbohydrates, fats, proteins, and deoxyribonucleic acid (DNA). One protein, called hemoglobin, carries oxygen in the blood and is what makes blood red. Hemoglobin contains atoms of six different elements—carbon, hydrogen, oxygen, nitrogen, sulfur, and iron.
(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)