Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.
The answer is: To see how fast hydrogen peroxide decomposes into water and oxygen.
Hope I helped god bless U ;)
Identify<span> each </span>bond<span> as either </span>polar<span> or nonpolar.</span>
Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
![Ka=\frac{[ClO-]*[H+]}{[HClO]}=\frac{x*x}{0.05-x}=3x10^{-8}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BClO-%5D%2A%5BH%2B%5D%7D%7B%5BHClO%5D%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.05-x%7D%3D3x10%5E%7B-8%7D)
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:

clearing the x and calculating its value we have:
![x=3.87x10^{-5}=[H+]=[ClO-]](https://tex.z-dn.net/?f=x%3D3.87x10%5E%7B-5%7D%3D%5BH%2B%5D%3D%5BClO-%5D)
the pH can be calculated by:
![pH=-log[H+]=-log[3.87x10^{-5}]=4.41](https://tex.z-dn.net/?f=pH%3D-log%5BH%2B%5D%3D-log%5B3.87x10%5E%7B-5%7D%5D%3D4.41)
C because its meters right