Answer : The value of
for the final reaction is, 
Explanation :
The following equilibrium reactions are :
(1)

(2)

(3)

The final equilibrium reaction is :

Now we have to calculate the value of
for the final reaction.
First half the equation 1, 2 and 3 that means we are taking square root of equilibrium constant and then add all the equation 1, 2 and 3 that means we are multiplying all the equilibrium constant, we get the final equilibrium reaction and the expression of final equilibrium constant is:

Now put all the given values in this expression, we get :


Therefore, the value of
for the final reaction is, 
Light does not travel at a constant speed in a vacuum, compared to in air, because the light is being absorbed by atoms and molecules in the air. But light does travel at a constant speed in a vacuum.
So I agree with A
All that talk about moving forward is irrelevant (I think)
Anything can be broken down, as long as it is not as small as an atom
Try adding spaces next time! That's iodine. Check all of the numbers to make sure all of the orbitals are filled, then find the ones which aren't. In this one, only the 5p5 subshell isn't full. 5p5 is the fifth row on the right side, count across the nonmetals and metalloids until the fifth one (a halogen). That's iodine, and that's your answer!